Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060503    DOI: 10.1088/0256-307X/29/6/060503
GENERAL |
Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator
BAI Zhan-Wu**
Department of Mathematics and Physics, North China Electric Power University, Baoding 071003
Cite this article:   
BAI Zhan-Wu 2012 Chin. Phys. Lett. 29 060503
Download: PDF(462KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The specific heat anomalies are analytically studied in the system in which a harmonic oscillator couples to a heat bath with harmonic noise. The physical explanation leads to a general spectral dependence of the specific heat anomalies. The condition of a dip appearance and the behaviors of the dip can be given according to the shape of the bath's power spectrum by employing the minimal heat bath model.

Keywords: 05.40.-a      05.30.Ch      05.70.Ce     
Received: 21 January 2012      Published: 31 May 2012
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.30.Ch (Quantum ensemble theory)  
  05.70.Ce (Thermodynamic functions and equations of state)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060503       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAI Zhan-Wu

[1] H?nggi P and Ingold G -L 2006 Acta Phys. Pol. B 37 1537

[2] Bandyopadhyay M 2008 arXiv:0804.0290

[3] H?nggi P, Ingold G -L and Talkner P 2008 New. J. Phys. 10 115008

[4] Wang C Y and Bao J D 2008 Chin. Phys. Lett. 25 429

[5] Kumar J, Sreeram P A and Dattagupta S 2009 Phys. Rev. E 79 021130

[6] Bandyopadhyay M and Dattaguputa S 2009 arXiv: 0903.2952

[7] Ingold G -L, H?nggi P and Talkner P 2009 Phys. Rev. E 79 061105

[8] Ford G W and O'Connell R F 2007 Phys. Rev. B 75 134301

[9] Wie?niak M, Vedral V and Brukner ? 2008 Phys. Rev. B 78 064108

[10] Feynman R P 1972 Statistical Mechanics (Redwood City: Addsion-Wesley) p 82

[11] Caldeira A O and Leggett A J 1983 Ann. Phys. (N.Y.) 149 374

[12] Grabert H, Weiss U and Talkner P 1984 Z. Phys. B 55 87

[13] Leggett A J, Chakravarty S, Dorsey A T, Fisher P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1

[14] Grabert H, Schramm P and Ingold G -L 1988 Phys. Rep. 168 115

[15] Ford G W, Lewis J T and O'Connell R F 1988 Ann. Phys. (N.Y.) 185 270

[16] Hanke A and Zwerger W 1995 Phys. Rev. E 52 6875

[17] Dittrich T, H?nggi P, Ingold G -L, Kramer B, Sch?n G and Zwerger W 1998 Quantum Transport Dissipation (Weinheim: Wiley-VCH) chap 4

[18] Ingold G -L 2002 Lect. Notes Phys. 611 1

[19] Dykman M I, McClintock P V E, Stein N D and Stocks N G 1991 Phys. Rev. Lett. 67 933

[20] Bartussek R, H?nggi P H, Lindner B and Schimansky-Geier L 1997 Physica D 109 17

[21] Landa P S 1998 Phys. Rev. E 58 1325

[22] Mallick K 2007 Physica A 384 64

[23] Bao J D, Song Y L, Ji Q and Zhuo Y Z 2005 Phys. Rev. E 72 011113

Related articles from Frontiers Journals
[1] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 060503
[2] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 060503
[3] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 060503
[4] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 060503
[5] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 060503
[6] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 060503
[7] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 060503
[8] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 060503
[9] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 060503
[10] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 060503
[11] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 060503
[12] TANG Jun**, QU Li-Cheng, LUO Jin-Ming . Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network[J]. Chin. Phys. Lett., 2011, 28(10): 060503
[13] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 060503
[14] ZHANG Yan-Ping, HE Ji-Zhou. Thermodynamic Performance Characteristics of an Irreversible Micro-Brownian Heat Engine Driven by Temperature Difference[J]. Chin. Phys. Lett., 2010, 27(9): 060503
[15] GUO Feng, ZHOU Yu-Rong, ZHANG Yu. Stochastic Resonance in a Time-Delayed Bistable System Driven by Square-Wave Signal[J]. Chin. Phys. Lett., 2010, 27(9): 060503
Viewed
Full text


Abstract