Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060502    DOI: 10.1088/0256-307X/29/6/060502
GENERAL |
Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators
NIU Yao-Bin**, WANG Zhong-Wei, DONG Si-Wei
College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073
Cite this article:   
NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei 2012 Chin. Phys. Lett. 29 060502
Download: PDF(430KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new modified homotopy perturbation method is presented for strongly non-linear oscillation by coupling the homotopy perturbation method and the modified Lindstedt–Poincaré method. The advantage of this method is that it does not need a small parameter in the physical system as in He's homotopy perturbation method, and the accuracy is greatly improved. Some examples are tested, and the obtained results show that the current method is very effective and convenient for solving strongly nonlinear oscillators.

Keywords: 05.45.-a      03.65.Ge     
Received: 07 November 2011      Published: 31 May 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060502       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIU Yao-Bin
WANG Zhong-Wei
DONG Si-Wei

[1] He J H 1999 Int. J. Nonlinear Mech. 34 699

[2] Odibat Z M and Momani S 2006 Int. J. Non-linear Sci. Numer. Simul. 7 27

[3] Momani S and Abuasad S 2006 Chaos Solitons Fractals 27 1119

[4] Xu L 2007 J. Comput. Appl. Math. 207 148

[5] He J H 2006 Int. J. Mod. Phys. B 20 1141

[6] Darvishi M T, Karami A and Byeong C S 2008 Phys. Lett. A 372 5381

[7] He J H 2001 Int. J. Nonlinear Sci. Numer. Simul. 2 257

[8] Liu H M 2005 Chaos Solitons Fractals 23 577

[9] He J H 2002 Int. J. Nonlinear Mech. 37 309

[10] He J H 2002 Int. J. Nonlinear Mech. 37 315

[11] He J H 2001 Int. J. Nonlinear Sci. Numer. Simul. 2 317

[12] Cheung Y K, Chen S H and Lau S L 1991 Int. J. Nonlinear Mech. 26 367

[13] Zhang Q C, Wang W and Li W Y 2008 Chin. Phys. Lett. 25 1905

[14] Gottlieb H P W 2006 J. Sound Vib. 297 243

[15] Itovich G R and Moiola J L 2005 Chaos Solitons Fractals 27 647

[16] Belendez A 2007 J. Sound Vib. 302 1018

[17] Hu H and Tang J H 2006 J. Sound Vib. 294 637

[18] He J H 1999 Comput. Methods Appl. Mech. Engin. 178 257

[19] Cveticanin L 2006 Chaos Solitons Fractals 30 1221

[20] He J H 2006 Int. J. Mod. Phys. B 20 2561

[21] Shou D H 2007 Int. J. Nonlinear Sci. Numer. Simul 8 121

[22] Belendez A, Pascual C and Gallego S 2007 Phys. Lett. A 371 421

[23] He J H 2000 Int. J. Nonlinear Mech. 35 37

[24] He J H 2004 Appl. Math. Comput. 151 287

[25] Golbabai A and Javidi M 2007 Appl. Math. Comput. 190 1409

[26] He J H 2004 Appl. Math. Comput. 156 591

[27] He J H 2006 Phys. Lett. A 350 87

[28] He J H 2005 Chaos Solitons Fractals 26 827

[29] Nayfeh A H 1981 Introduction to Perturbation Techniques (New York: Wiley)

[30] He J H 2000 J. Sound Vib. 229 1257

[31] Lai S K, Lim C W, Wu B S, Wang C, Zeng Q C and He X F 2009 Appl. Math. Modeling 33 852

[32] Guo Z J, Leung A Y T and Yang H X 2011 Appl. Math. Modeling 35 1717

[33] Ganji D D, Gorji M, Soleimani S and Esmaeilpour M 2009 J. Zhejiang Univ. Sci. A 10 1263

Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[2] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[4] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 060502
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060502
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 060502
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 060502
[11] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 060502
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 060502
[13] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 060502
[14] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060502
[15] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 060502
Viewed
Full text


Abstract