Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060501    DOI: 10.1088/0256-307X/29/6/060501
GENERAL |
Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing
Salman Ahmad1**, YUE Bao-Zeng2
1Department of Humanities & Sciences, Institute of Space Technology, Islamabad 44000, Pakistan
2Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081
Cite this article:   
Salman Ahmad, YUE Bao-Zeng 2012 Chin. Phys. Lett. 29 060501
Download: PDF(739KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Motion stability of a spacecraft is discussed. A canonical Hamiltonian model for liquid sloshing is presented for a moving rigid body. An equivalent mechanical pendulum model is used to represent the fuel slosh inside the container. In this model sloshing is represented by the moving mass, the rest of the mass of the spacecraft is assumed to be stationary. The spacecraft structure is considered to be an elliptical rigid shape and the steady rotation along the x-axis is taken as the major-axis rotation. Motion stability for the present model is analyzed using the Lyapunov theory with Casimir energy functions. Conditions for stability and instability are derived for a steady principal axis rotation of the rigid body. Simulation results are presented to distribute the region into stable and unstable regions. Besides this, the nonlinear behavior of the system is analyzed under the influence of an external force acting periodically. Chaos is observed through a bifurcation diagram. The time history map and phase portrait are also presented to analyze the nonlinear behavior of the system.

Keywords: 05.45.Gg      95.10.Fh      45.40.Bb     
Received: 19 December 2011      Published: 31 May 2012
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  95.10.Fh (Chaotic dynamics)  
  45.40.Bb (Rotational kinematics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Salman Ahmad
YUE Bao-Zeng

[1] Abzug M J 1996 J. Guidance, Control Dyn. 19 1172

[2] Rebouillat S and Liksonov D 2010 Comput. Fluids 39 739

[3] Thomas P and Frank R J 1996 J. Spacecraft Rockets 33 54

[4] Ibrahim R A 2005 Liquid Sloshing Dynamics: Theory and Applications (Cambridge: Cambridge University)

[5] Ahmad S and Yue B Z 2011 Chin. Sci. Bull. 56 2674

[6] Wu G X 2011 Science China Phys. Mech. & Astron. 54 2

[7] Yang W, Liu S H and Lin H 2009 Sci. Chin. E 52 1484

[8] Krishnaprasad P S and Marsden J E 1987 Archive for Rational Mech. Analysis 98 71

[9] Issa A T 2010 American Control Conference (ACC) 2010 (Marriott Waterfront, Baltimore, MD, USA June 30–July 02, 2010)

[10] Chinnery A E and Christopher D H 1995 J. Guidance, Control Dyn. 18 1404

[11] Woolsey C A 2005 J. Guidance Control Dyn. 28 131

[12] Abramson N H 1966 The Dynamic Behavior of Liquid in Moving Containers (Washington D.C.: NASA)

[13] Franklin T D 2000 Southwest Research Institute (Texas)

[14] Marsden J E and Ratiu T S 1998 Lecture Notes in Mathematics (Berlin: Springer)

[15] Khalil H 2002 Nonlinear Systems 3rd edn (Upper Saddle River, NJ, USA: Pearson Education, Inc.)

[16] Arnold V I 1965 Sov. Math Dokl. 5 773

[17] Yang H Q and John P 2010 46th AIAA Joint Propulsion Conference & Exhibition (Nashville, TN 25–28 July 2010)

Related articles from Frontiers Journals
[1] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060501
[2] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 060501
[3] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 060501
[4] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 060501
[5] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 060501
[6] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 060501
[7] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 060501
[8] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 060501
[9] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 060501
[10] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 060501
[11] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 060501
[12] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 060501
[13] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 060501
[14] LU Xiao-Qing, Francis Austin, CHEN Shi-Hua. Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs[J]. Chin. Phys. Lett., 2010, 27(5): 060501
[15] LI Fei, PAN Chang-Ning, ZHANG Dong-Xia, TANG Li-Qiang. Chaotic Dynamics of a Josephson Junction with Nonlinear Damping[J]. Chin. Phys. Lett., 2010, 27(5): 060501
Viewed
Full text


Abstract