Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060307    DOI: 10.1088/0256-307X/29/6/060307
GENERAL |
Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials
Akpan N. Ikot*
Theoretical Physics Group, Department of Physics, University of Uyo, Nigeria
Cite this article:   
Akpan N. Ikot 2012 Chin. Phys. Lett. 29 060307
Download: PDF(380KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present the bound-state solutions to the Klein–Gordon equation with equal scalar and vector modified Hylleraas plus exponential Rosen Morse potentials using the parametric Nikiforov–Uvarov method. We use the elegant approximation scheme to the centrifugal term. The bound state energy eigenvalues and the corresponding wave function are obtained. We also discuss the special cases.

Keywords: 03.65.Ge      03.65.-w      03.65.Ca     
Received: 22 February 2012      Published: 31 May 2012
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.-w (Quantum mechanics)  
  03.65.Ca (Formalism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060307       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Akpan N. Ikot

[1] Ikot A N, Akpabio L E and Uwah E J 2011 Electron. J. Theor. Phys. 8 225

[2] Jia C S, Guo P, Diao Y F, Yi L Z and Xie X Y 2007 Eur. Phys. J. A 34 41

[3] Qiang W C, Wu J Y and Dong S H 2009 Phys. Scr. 79 065011

[4] Dong S H and Cassou M L 2006 Phys. Scr. 74 1

[5] Chen G, Chen Z D and Lou Z M 2004 Phys. Lett. A 331 374

[6] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys. Lett. A 349 87

[7] Xu Y, He S and Jia C S 2010 Phys. Scr. 81 045001

[8] Alberto P, de Castro A S and Malheiro M 2007 Phys. Rev. C 75 047303

[9] Arda A, Sever R and Tezcan C 2010 Chin. J. Phys. 48 27

[10] Chen C Y and Dong S H 2005 Phys. Lett. A 305 374

[11] Wei G F, Long C Y, Duan X Y and Dong S A 2008 Phys. Scr. 77 035011

[12] Wei G F and Dong S H 2010 Phys. Lett. B 686 288

[13] Alhaidari A D 2010 Found. Phys. 40 1088

[14] Hamzazi M and Rajabi A A 2011 Commun. Theor. Phys 55 35

[15] Dong S H, Qiang W C and Ravelo Garcia J 2008 Int. J. Mod. Phys. A 23 1537

[16] Chen G 2005 Phys. Lett. A 339 300

[17] Oyewumi K J and Akoshile C O 2010 Eur. Phys. J. A 45 311

[18] Bose S K, Schulze-Halberg A and Singh M 2001 Phys. Lett. A 287 321

[19] Panahi H and Bakhsh Z 2011 Int. J. Theor. Phys. 50 2811

[20] Dominguez-Adame F 1990 J. Phys. A: Math. Gen. 23 1993

[21] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)

[22] Hassanabadi H, Zarrinkamar S and Rahimov H 2011 Commun. Theor. Phys. 56 423

[23] Tezcan C and Sever R 2008 Int. J. Theor. Phys. 47 1471

[24] Hylleraas E A 1935 J. Chem. Phys. 3 595

Varshni Y P 1957 Rev. Mod. Phys. 29 664

[25] Debnath S and Biswas B 2012 Electron. J. Theor. Phys. 19 191

[26] Hill E H 1957 Am. J. Phys. 22 211

Oudi R, Hassanabadi S, Rajabi A A and Hassnabadi H 2012 Commun. Theor. Phys. 57 15

[27] Berkdemir A, Berkdemir C and Sever R 2004 arXiv:Quant-Ph/0410153

Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 060307
[2] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 060307
[3] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 060307
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 060307
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 060307
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 060307
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060307
[8] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 060307
[9] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 060307
[10] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 060307
[11] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 060307
[12] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 060307
[13] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 060307
[14] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 060307
[15] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 060307
Viewed
Full text


Abstract