Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060306    DOI: 10.1088/0256-307X/29/6/060306
GENERAL |
Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space
Ramesh Kumar, Fakir Chand**
Department of Physics, Kurukshetra University, Kurukshetra-136119, India
Cite this article:   
Ramesh Kumar, Fakir Chand 2012 Chin. Phys. Lett. 29 060306
Download: PDF(398KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We deal with the solutions to the radial Schröinger equation for the Coulomb perturbed potential in N-dimensional Hilbert space by using two methods, i.e. the power series technique via a suitable ansatz to the wavefunction and the Virial theorem. Analytic expressions for eigenvalues and normalized eigenfunctions are derived. A recursion relation among series expansion coefficients, a condition for convergence of series and inter-dimensional degeneracies are also investigated. As special cases, the problem is solved in 3 and 4 dimensions with some specific parameter values. The obtained analytical and numerical results are in good agreement with the results of other studies.

Received: 15 March 2012      Published: 31 May 2012
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060306       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ramesh Kumar
Fakir Chand

[1] Plastino A R, Casa M and Plastino A 2001 Phys. Lett. A 281 297

[2] Roy B and Roy P 2002 J. Phys. A 35 3961

[3] Gonul B et al 2002 Mod. Phys. Lett. A 17 2453

Gonul B et al 2002 Mod. Phys. Lett. A 17 2057

[4] Alhaidari A D 2002 Phys. Rev. A 66 042116

Alhaidari A D 2003 Int. J. Theor. Phys. 42 2999

Alhaidari A D 2004 Phys. Lett. A 322 72

[5] Dong S H and Sun G H 2003 Phys. Lett. A 314 261

Dong S H and Sun G H 2004 Phys. Scr. 70 94

[6] Ikhdair S M and Sever R 2007 J. Mol. Struct. Theochem. 806 155

Ikhdair S M and Sever R 2008 Cent. Eur. J. Phys. 6 685

[7] Cardoso J L and Alvarez-Nodarse R 2003 J. Phys. A: Math. Gen. 36 2055

[8] Chen G 2005 Chin. Phys. 14 1075

[9] Kalnin E G, Miller Jr. W and Pogosyan G S 2002 Phys. At. Nucl. 65 1086

[10] Oyewumi K J 2005 Found. Phys. Lett. 18 75

[11] Oyewumi K J, Akinpelu F O and Agboola A D 2008 Int. J. Theor. Phys. 47 1039

[12] Agboola A D 2009 Phys. Scr. 80 065304

Agboola A D 2010 Chin. Phys. Lett. 27 040301

[13] Ikhdair S M and Sever R 2007 Int. J. Mod. Phys. C 18 1571

Ikhdair S M and Sever R 2008 19 221

Ikhdair S M and Sever R 2008 J. Mol. Struct. Theochem. 855 13

Ikhdair S M and Sever R 2008 Cent. Eur. J. Phys. 6 685

[14] Gu X Y, Ma Z Q and Dong S H 2007 Int. J. Mod. Phys. E 16 (1) 179

[15] Chaudhuri R N and Mondal M 1995 Phys. Rev. A 52 1850

[16] Tymczak C J, Japaridze G S, Handi C R and Wang X Q 1998 Phys. Rev. Lett. 80 3673

[17] Kostelecky V A and Nieto M M 1984 Phys. Rev. Lett. 53 2285

Kostelecky V A and Nieto M M 1985 Phys. Rev. A 32 1293

[18] Dutta D P and Mukherjee S 1982 J. Phys. A 15 2369

[19] Killingbeck J 1978 Phys. Lett. A 65 87

Killingbeck J 1978 Phys. Lett. A 67 13

[20] Maksimenko N V and Kuchin S M 2011 Russ. Phys. J. 54 57

[21] Kumar R and Chand F 2012 Phys. Scr. 85 055008

[22] Yu J, Dong S H and Sun G H 2004 Phys. Lett. A 322 290

[23] Nightingale M P and Moodley M 2005 J. Chem. Phys. 123 014304

[24] Gu X Y and Dong S H 2011 J. Math. Chem. 49 2053

[25] Feynman R P 1939 Phys. Rev. A 56 340

Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 060306
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 060306
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 060306
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 060306
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 060306
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 060306
[7] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 060306
[8] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 060306
[9] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 060306
[10] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 060306
[11] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 060306
[12] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 060306
[13] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 060306
[14] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 060306
[15] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 060306
Viewed
Full text


Abstract