GENERAL |
|
|
|
|
Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches |
REN Jie**, WU Yin-Zhong, ZHU Shi-Qun |
1Department of Physics and Jiangsu Laboratory of Advanced Functional Material, Changshu Institute of Technology, Changshu 215500 2School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 |
|
Cite this article: |
REN Jie, WU Yin-Zhong, ZHU Shi-Qun 2012 Chin. Phys. Lett. 29 060305 |
|
|
Abstract Using the adaptive time-dependent density-matrix renormalization group method, the dynamics of entanglement and quantum discord of an one-dimensional spin-1/2 XXZ chain is studied when anisotropic interaction quenches are applied at different temperatures. The dynamics of the quantum discord and pairwise entanglement between the nearest qubits shows that the entanglement and quantum discord will first oscillate and then approach to a constant value. The quantum discord can be used to predict the quantum phase transition, while the entanglement cannot.
|
|
Received: 13 March 2012
Published: 31 May 2012
|
|
PACS: |
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
|
|
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and QuantumInformation (Cambridge: Cambridge University) [2] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [3] Osterloh A et al 2002 Nature 416 608 [4] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110 [5] Gu S J, Tian G S and Lin H Q 2005 Phys. Rev. A 71 052322 [6] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517 [7] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 Zurek W H 2003 Rev. Mod. Phys. 75 715 [8] Dillenschneider R 2008 Phys. Rev. B 78 224413 [9] Luo S 2008 Phys. Rev. A 77 042303 [10] Sarandy M S 2009 Phys. Rev. A 80 022108 [11] Pal A K and Bose I 2011 J. Phys. B 44 045101 [12] Werlang T et al 2010 Phys. Rev. Lett. 105 095702 [13] Auccaise R et al 2011 arXiv:1104.1596 [14] Xu J S et al 2011 Nature Commun. 1 7 [15] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [16] Sengupta K and Sen D 2009 Phys. Rev. A 80 032304 [17] Nag T, Patra A and Dutta A 2011 arXiv:1105.4442 [18] Barmettler P et al 2009 Phys. Rev. Lett. 102 130603 [19] Chiara G D et al 2006 J. Stat. Mech. 2006 P03001 [20] Ren J and Zhu S Q 2010 Phys. Rev. A 81 014302 [21] Lancaster J and Mitra A 2010 Phys. Rev. E 81 061134 [22] Ganahl M et al 2012 Phys. Rev. Lett. 108 077206 [23] Greiner M, Mandel O, H鋘sch T W and Bloch I 2002 Nature 419 51 [24] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [25] Dowling M R, Doherty A C and Bartlett S D 2004 Phys. Rev. A 70 062113 [26] Wang X G and Zanardi P 2002 Phys. Lett. A 301 1 [27] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401 [28] White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401 [29] Vidal G 2004 Phys. Rev. Lett. 93 040502 [30] Calabrese P and Cardy J 2005 J. Stat. Mech. 2005 P04010 [31] Feiguin A E and White S R 2005 Phys. Rev. B 72 220401 [32] Barthel T, Schollw鯿k U and White S R 2009 Phys. Rev. B 79 245101 [33] Karrasch C, Bardarson J H and Moore J E 2011 arXiv:1111.4508 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|