GENERAL |
|
|
|
|
Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field |
WANG Qiang1, YE Chong2, FU Li-Bin2,3** |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 3Center for Applied Physics and Technology, Peking University, Beijing 100871 |
|
Cite this article: |
WANG Qiang, YE Chong, FU Li-Bin 2012 Chin. Phys. Lett. 29 060301 |
|
|
Abstract The strong effective magnetic fields with flux to the order of one flux quantum per plaquette has been realized for ultracold atoms, and the quantum cyclotron orbit of a single atom in a single plaquette exposed to the magnetic field was directly revealed recently [Phys. Rev. Lett. 107 (2011) 255301]. We study the quantum cyclotron orbits of a bosonic atom in a triple well with a synthetic gauge field, and find that the dynamics of the atom in real space is similar to a classical dynamic billiard. It is interesting that the billiard-like motion is a signature of the quantum evolution of the three-level system, and its behaviors are determined by the ratio of the two energy gaps of the three energy levels.
|
Keywords:
03.65.Vf
03.75.Lm
67.85.-d
|
|
Received: 01 February 2012
Published: 31 May 2012
|
|
PACS: |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
|
|
|
[1] Berry M V 1984 Proc. R. Soc. London A 392 45[2] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111[3] Dalibard J, Gerbier F, Juzelixxunas G and ?hberg P 2011 Rev. Mod. Phys. 83 1523[4] Dum R and Olshanii M 1996 Phys. Rev. Lett. 76 1788[5] Juzeliunas G and ?hberg P 2004 Phys. Rev. Lett. 93 033602[6] Ruseckas J, Juzeliunas G, ?hberg P and Fleischhauer M 2005 Phys. Rev. Lett. 95 010404[7] Juzeliunas G, Ruseckas J, ?hberg P and Fleischhauer M 2006 Phys. Rev. A 73 025602[8] Zhu S L, Fu H, Wu C J, Zhang S C and Duan L M 2006 Phys. Rev. Lett. 97 240401[9] Liu X J, Liu X, Kwek L C and Oh C H 2007 Phys. Rev. Lett. 98 026602[10] Stanescu T D, Zhang C and Galitski V 2007 Phys. Rev. Lett. 99 110403[11] Gunter K J, Cheneau M, Yefsah T, Rath S P and Dalibard J 2009 Phys. Rev. A 79 011604(R)[12] Juzeliunas G, Ruseckas J and Dalibard 2010 J Phys. Rev. A 81 053403[13] Cooper N R 2011 Phys. Rev. Lett. 106 175301[14] Sau J D, Sensarma R, Powell S, Spielman I B and Das Sarma S 2011 Phys. Rev. B 83 140510(R)[15] Campbell D L, Juzeliunas G and Spielman I B 2011 Phys. Rev. A 84 025602[16] Xu Z F and You L 2011 arXiv:1110.5705[17] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401[18] Lin Y J, Compton R L, Jim'enez-Garc'ia K, Porto J V and Spielman I B 2009 Nature 462 628[19] Lin Y J, Compton R L, Jim'enez-Garc'ia K, Phillips W D, Porto J V and Spielman I B 2011 Nature Phys. 7 531[20] Lin Y J, Jim'enez-Garc'ia K and Spielman I B 2011 Nature 471 83[21] Aidelsburger M, Atal M, Nascimbène S, Trotzky S, Chen Y -A and Bloch I 2011 Phys. Rev. Lett. 107 255301 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|