Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 057302    DOI: 10.1088/0256-307X/29/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors
MA Peng1,JIN Zhi1**,GUO Jian-Nan1,PAN Hong-Liang1,LIU Xin-Yu1,YE Tian-Chun1,WANG Hong2,WANG Guan-Zhong2
1Department of Microwave IC, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
MA Peng, JIN Zhi, GUO Jian-Nan et al  2012 Chin. Phys. Lett. 29 057302
Download: PDF(908KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the dc and rf performance of graphene rf field-effect transistors, where the graphene films are grown on copper by using the chemical vapour deposition (CVD) method and transferred to SiO2/Si substrates. Composite materials, benzocyclobutene and atomic layer deposition Al2O3 are used as the gate dielectrics. The observation of n− and p-type transitions verifies the ambipolar characteristics in the graphene layers. While the intrinsic carrier mobility of CVD graphene is extracted to be 1200 cm2/V⋅s, the parasitic series resistances are demonstrated to have a serious impact on device performance. With a gate length of 1 µm and an extrinsic transconductance of 72 mS/mm, a cutoff frequency of 6.6 GHz and a maximum oscillation frequency of 8.8 GHz are measured for the transistors, illustrating the potential of the CVD graphene for rf applications.
Received: 12 October 2011      Published: 30 April 2012
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.22.Pr (Electronic structure of graphene)  
  77.55.D-  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/057302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/057302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Peng
JIN Zhi
GUO Jian-Nan
PAN Hong-Liang
LIU Xin-Yu
YE Tian-Chun
WANG Hong
WANG Guan-Zhong
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[3] Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nature Nanotechnol. 3 654
[4] Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y and Duan X 2010 Nature 467 305
[5] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[6] Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y and Avouris P 2011 Nature 472 74
[7] Lin Y M, Valdes-Garcia A, Han S J, Farmer D B, Meric I, Sun Y, Wu Y, Dimitrakopoulos C, Grill A, Avouris P and Jenkins K A 2011 Science 332 1294
[8] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[9] Sun Z, Yan Z, Yao J, Beitler E, Zhu Y and Tour J M 2010 Nature 468 549
[10] Jin Z, Su Y, Chen J, Liu X and Wu D 2009 Appl. Phys. Lett. 95 233110
[11] Ma P, Jin Z, Guo J, Pan H, Liu X and Ye T 2010 Appl. Phys. Lett. (submitted)
[12] Lin Y M, Jenkins K A, Valdes-Garcia A, Small J P, Farmer D B and Avouris P 2009 Nano Lett. 9 422
[13] Farmer D B, Chiu H Y, Lin Y M, Jenkins K A, Xia F and AVouris P 2009 Nano Lett. 9 4474
[14] Kim S, Nah, J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[15] Farmer D B, Golizadeh-Mojarad R, Perebeinos V, Lin Y M, Tulevski G S, Tsang J C and Avouris P 2009 Nano Lett. 9 388
[16] Huard B, Stander N, Sulpizio J A and Goldhaber-Gordon D 2008 Phys. Rev. B 78 121402(R)
[17] Parrish K N and Akinwande D 2011 Appl. Phys. Lett. 98 183505
[18] Farmer D B, Lin Y M and Avouris P 2010 Appl. Phys. Lett. 97 013103
[19] Huang B C, Zhang M, Wang Y and Woo J 2011 Appl. Phys. Lett. 99 032107
[20] Robinson J A, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R and Snyder D 2011 Appl. Phys. Lett. 98 053103
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 057302
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 057302
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 057302
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 057302
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 057302
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 057302
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 057302
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 057302
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 057302
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 057302
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 057302
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 057302
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 057302
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 057302
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 057302
Viewed
Full text


Abstract