Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 057301    DOI: 10.1088/0256-307X/29/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
In-Situ SRPES Study on the Band Alignment of (0001)CdS/CdTe Heterojunction
GAO Jun-Ning1,JIE Wan-Qi1**,YUAN Yan-Yan1,ZHA Gang-Qiang1,XU Ling-Yan1,WU Heng1,WANG Ya-Bin1,YU Hui1,ZHU Jun-Fa2
1State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
2National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029
Cite this article:   
GAO Jun-Ning, JIE Wan-Qi, YUAN Yan-Yan et al  2012 Chin. Phys. Lett. 29 057301
Download: PDF(630KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The band alignment of a (0001)CdS/CdTe heterojunction is in situ studied by synchrotron radiation photoemission spectroscopy (SRPES). The heterojunction is formed through stepwise deposition of a CdTe film on a wurtzite (0001)CdS single crystalline substrate via molecular beam epitaxy. CdS shows an upward band bending of 0.55 eV, the valence band offset ΔEV is calculated to be 0.65 eV and the conduction band offset ΔEC is 0.31 eV. The interfacial band alignment is sketched to display type-I band alignment.
Received: 27 February 2012      Published: 30 April 2012
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ga (II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/057301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/057301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Jun-Ning
JIE Wan-Qi
YUAN Yan-Yan
ZHA Gang-Qiang
XU Ling-Yan
WU Heng
WANG Ya-Bin
YU Hui
ZHU Jun-Fa
[1] Wu X 2004 Sol. Energy 77 803
[2] Mitra M, Drayton J, Cooray M L C, Karpov V G and Shvydkac D 2007 J. Appl. Phys. 102 034505
[3] Böer K W 2010 J. Appl. Phys. 107 023701
[4] Li J, Chen J and Collins R W 2010 Appl. Phys. Lett. 97 181909
[5] Munoz A, Chetty N and Martin R M 1990 Phys. Rev. B 41 2976
[6] Frey A, Bass U, Mahapatra S, Schumacher C, Geurts J and Brunner K 2010 Phys. Rev. B 82 195318
[7] Guo Y, Liu X L, Song H Ping et al 2010 Chin. Phys. Lett. 27 067302
[8] Loher T, Tomm Y, Pettenkofer C, Klein A and Jaegermann W 2000 Semicond. Sci. Technol. 15 514
[9] Cook T E, Fulton C C, Mecouch W J, Davis R F, Lucovsky G and Nemanicha R J 2003 J. Appl. Phys. 94 3949
[10] Fritsche J, Thißen A, Klein A and Jaegermann W 2001 Thin Solid Films 387 158
[11] Boieriu P, Sporkena R and Sivananthan S 2002 J. Vac. Sci. Technol. B 20 1777
[12] Niles D W and Hochst H 1990 Phys. Rev. B 41 12710
[13] Fritsche J, Schulmeyer T, Kraft D, Thißen A, Klein A and Jaegermann W 2002 Appl. Phys. Lett. 81 2297
[14] Nishi K, Ohyama H, Siuzuki T, Mitsuyu T and Tomimasu T 1997 Appl. Phys. Lett. 70 3585
[15] Ebert H, Knecht M, Muhler M, Helmer O and Bensch W 1995 J. Phys. Chem. 99 3326
[16] Moulder J F, Stickle W F, Sobol P E and Bomben K D 1992 Handbook of X-Ray Photoelectron Spectroscopy (Perking-Elmer Corporation, Physical Electronics Division Eden Prairie)
[17] Bennett M R, Cafolla A A, Cairns J W, Dunscombe C J and Williams R H 1996 Surf. Sci. 360 187
[18] Waag A, Wu Y S, Bickne R N, Tassius U, Gonser-Buntrock C and Landwehr G 1990 J. Appl. Phys. 68 212
[19] Windheim J A V and Cocivera M 1992 J. Phys. Chem. Solids 53 31
[20] Wienecke M, Berger H and Schenk M 1993 Mater. Sci. Eng. B 16 219
[21] Sebastian P J 1992 Thin Solid Films 221 233
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 057301
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 057301
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 057301
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 057301
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 057301
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 057301
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 057301
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 057301
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 057301
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 057301
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 057301
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 057301
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 057301
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 057301
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 057301
Viewed
Full text


Abstract