Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 055202    DOI: 10.1088/0256-307X/29/5/055202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Pressure and Discharge-Voltage Dependence of Self-Sustaining Pulses in Air-Glow Discharge
A. A. Azooz,Y. A. Al-Jawaady,Z. T. Ali
Department of Physics, College of Science, Mosul University, Mosul, Iraq
Cite this article:   
A. A. Azooz, Y. A. Al-Jawaady, Z. T. Ali 2012 Chin. Phys. Lett. 29 055202
Download: PDF(533KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The details of formation of micro discharges in air-glow discharge plasma are experimentally studied. The number of micro discharges formed per second is strongly related to both pressure and discharge voltage. This number tends to show reflections of the Patchen curve as far as its pressure dependence is concerned. The discharge-voltage dependence indicates that the transition from normal to abnormal glow discharge is not a sudden one, but has its roots during the normal glow stage and is initiated by the micro discharges which can be regarded as the early stage of abnormal glow.

Received: 16 November 2011      Published: 30 April 2012
PACS:  52.35.Ra (Plasma turbulence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/055202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/055202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. A. Azooz
Y. A. Al-Jawaady
Z. T. Ali
[1] Klinger T, Greiner F, Latten A, Piel A, Pierre T, Bonhomme G, Arnas Capeau C, Bachet G and Doveil F 1995 J. Phys. VI (Paris) 5 C6-131
[2] Sigmond R S 1997 J. Phys. VI (Paris) 7 C4-383
[3] Petrović Z L and Phelps A V 1997 Phys. Rev. E 56 5920
[4] Maric D, Malovic G and Petrovic Z L 2009 Plasma Sources Sci. Technol. 18 034009
[5] Pérès I and Pitchford L C 1995 J. Appl. Phys. 78 774
[6] Hensela K 2009 Eur. Phys. J. D 54 141
[7] Du B, Mohr S, Luggenhölscher D and Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 125204
[8] Stefanović I, Škoro N, Marić D and Petrović Z L 2010 20th ESCAMPIG (Novi Sad, Serbia)
[9] Donko Z 1999 J. Phys. D: Appl. Phys. 32 1657
[10] Marić D, Škoro N, Malović G, Petrović Z L, Mihailov V and Djulgerova R 2009 J. Phys.: Conf. Ser. 162
[11] Rousseau A and Aubert X 2006 J. Phys. D: Appl. Phys. 39 1619
[12] Walsh J L, Iza F, Janson N B, Law V J and Kong M G 2010 J Phys. D: Appl. Phys. 43 075201
[13] Hong Y C and Uhm H S 2006 Appl. Phys. Lett. 89 221504
[14] Balmain K G 1972 IEEE Trans. Anten. Propagat. 20 400
Related articles from Frontiers Journals
[1] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 055202
[2] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 055202
[3] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 055202
[4] Zhen-Wei Xia, Chun-Hua Li, Dan-Dan Zou, Wei-Hong Yang. Helical Mode Absolute Statistical Equilibrium of Ideal Three-Dimensional Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2017, 34(1): 055202
[5] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 055202
[6] WANG Guan-Qiong, MA Jun, WEILAND J., ZAGORODNY A.. Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance[J]. Chin. Phys. Lett., 2015, 32(11): 055202
[7] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 055202
[8] CHEN Ran, XIE Jin-Lin**, YU Chang-Xuan, LIU A-Di, LAN Tao, ZHANG Shou-Biao, HU Guang-Hai, LI Hong, LIU Wan-Dong . Identification of Low-Frequency Zonal Flow in a Linear Magnetic Plasma Device[J]. Chin. Phys. Lett., 2011, 28(2): 055202
[9] XU Hui, SHENG Zheng-Ming, ZHENG Jun, XIA Yun-Jie. Generation of Broadband High Harmonics through Linear Mode Conversion in Inhomogeneous Plasmas[J]. Chin. Phys. Lett., 2010, 27(4): 055202
[10] DONG Li-Fang, FAN Wei-Li, WANG Hui-Juan, ZHANG Qing-Li, WANG Long. Nonlinear Interaction and Coherent Structure in Tokamak Plasma Turbulence[J]. Chin. Phys. Lett., 2006, 23(11): 055202
[11] LU Rong-Hua, PAN Ge-Sheng, WANG Zhi-Jiang, WEN Yi-Zhi, LIU Wan-Dong, WAN Shu-De, YU Chang-Xuan, WANG Jun, XIAO De-Long, XU Min. Effects of Dual-Electrode Biasing on Er in a Toroidal Plasma[J]. Chin. Phys. Lett., 2005, 22(6): 055202
[12] LIU Feng, DONG Jia-Qi, GAO Zhe. Electron Temperature Gradient Driven Instability in High Beta Plasmas of a Sheared Slab[J]. Chin. Phys. Lett., 2005, 22(5): 055202
[13] PANG Jin-Qiao, WU Ze-Qing, YAN Jun, HAN Guo-Xing. Theoretical Calculations of Opacity for Non-Local-Thermodynamic-Equilibrium Plasmas[J]. Chin. Phys. Lett., 2004, 21(10): 055202
[14] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. Naturally Occurring Velocity Shear Layer at the Plasma Edge of HT-7 Tokamak[J]. Chin. Phys. Lett., 2004, 21(1): 055202
[15] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. First Measurement of the Magnetic Turbulence Induced Reynolds Stress in a Tokamak[J]. Chin. Phys. Lett., 2003, 20(12): 055202
Viewed
Full text


Abstract