FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink |
Swati Mukhopadhyay* |
Department of Mathematics, The University of Burdwan, Burdwan-713104, W. B., India |
|
Cite this article: |
Swati Mukhopadhyay 2012 Chin. Phys. Lett. 29 054703 |
|
|
Abstract The unsteady two-dimensional flow of a MHD non-Newtonian Maxwell fluid over a stretching surface with a prescribed surface temperature in the presence of a heat source/sink is investigated. Similarity solutions for the governing equations are obtained. The transformed boundary layer equations are then solved numerically by using the shooting method. Fluid velocity initially decreases with the increasing unsteadiness parameter, and temperature decreases significantly due to unsteadiness. It is also found that the fluid velocity decreases with the increasing magnetic parameter. Increasing the Maxwell parameter values has the effect of suppressing the velocity field and increasing the temperature.
|
|
Received: 08 November 2011
Published: 30 April 2012
|
|
|
|
|
|
[1] Ishak A, Nazar R and Pop I 2008 Heat Mass Transfer 44 921 [2] Gupta P S and Gupta A S 1977 Can. J. Chem. Engin. 55 744 [3] Vleggaar J 1977 Chem. Engin. Sci. 32 1517 [4] Dutta B K, Roy P and Gupta A S 1985 Int. Commun. Heat Mass Transfer 12 89 [5] Crane L J 1970 Z. Angew. Math. Phys. 21 645 [6] Liu I C and Andersson H I 2008 Int. J. Thermal Sci. 47 766 [7] Sadeghy K and Sharifi M 2004 Int. J. Non-Linear Mech. 39 1265 [8] Serdar B and Salih Dokuz M 2006 Int. J. Engin. Sci. 44 49 [9] Haroun M H 2007 Commun. Nonlin. Sci. Numer. Simul. 12 1464 [10] Hassanien I A 1996 Appl. Model. 20 779 [11] Andersson H I and Dandapat B S 1992 Appl. Anal. Continuous Media 1 339 [12] Siddiqui A M, Zeb A, Ghori Q K and Benharbit A M 2008 Chaos Solitons Fractals 36 182 [13] Sajid M, Ahmad I, Hayat T and Ayub M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 96 [14] Heyhat M M and Khabazi N 2010 Proc. IMechE Part C: J. Mech. Engin. Sci. 225 [15] Hameed M and Nadeem S 2007 J. Math. Anal. Appl. 325 724 [16] Chien C H 2008 Int. J. Therm. Sci. 47 954 [17] Hayat T, Fetecau C and Sajid M 2008 Phys. Lett. A 372 1639 [18] Sadeghy K, Khabazi N and Taghavi S M 2007 Int. J. Engin. Sci. 45 923 [19] Hayat T, Abbas Z and Sajid M 2006 Phys. Lett. A 358 396 [20] Andersson H I, Aarseth J B and Dandapat B S 2000 Int. J. Heat Mass Transfer 43 69 [21] Dandapat B S, Santra B and Andersson H I 2003 Int. J. Heat Mass Transfer 46 3009 [22] Ali M E and Magyari E 2007 Int. J. Heat Mass Transfer 50 188 [23] Dandapat B S, Santra B and Vajravelu K 2007 Int. J. Heat Mass Transfer 50 991 [24] Elbashbeshy E M A and Bazid M A A 2004 Heat Mass Transfer 41 1 [25] Sharidan S, Mahmood T and Pop I 2006 Int. J. Appl. Mech. Engin. 11 647 [26] Mukhopadhyay S 2009 Int. J. Heat Mass Transfer 52 3261 [27] Mukhopadhyay S 2010 Chin. Phys. Lett. 27 124401 [28] Tsai R, Huang K H and Huang J S 2008 Int. Commun. Heat Mass Transfer 35 1340 [29] Chamkha A J, Aly A M and Mansour M A 2010 Chem. Engin. Commun. 197 846 [30] Rajagopal K R 1995 Appl. Math. Mech. 77 209 [31] Sadeghy K, Hajibeygi H and Taghavi S M 2006 Int. J. Non-Linear Mech. 41 1242 [32] Abel M S, Tawade J V and Nandeppanavar M M 2011 Meccanica |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|