FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Transmission Characteristics in a Coupled-Resonator Waveguide Interacting with a Two-Mode Nanocavity Containing a Three-Level Emitter |
CHENG Mu-Tian1,SONG Yan-Yan1,YU Long-Bao2** |
1School of Electrical Engineering & Information, Anhui University of Technology, Maanshan 243002
2School of Electronic and Information Engineering, Hefei Normal University, Hefei 230061 |
|
Cite this article: |
CHENG Mu-Tian, SONG Yan-Yan, YU Long-Bao** 2012 Chin. Phys. Lett. 29 054211 |
|
|
Abstract The photon transport in a coupled-resonator waveguide coupled to a two-mode nanocavity embedded with a three-level emitter is investigated. The transmission and reflection amplitudes are obtained by using the discrete coordinates approach. We show that the coherent transport properties of a single photon can be well controlled by detuning the coupling strength between the two-mode nanocavity and the emitter, and the coupling strength between the nanocavity and the coupled-resonator waveguide. These results may be useful for the design of photonic devices such as optical filters.
|
Keywords:
42.50.Ct
42.79.Gn
42.65.Wi
|
|
Received: 31 January 2012
Published: 30 April 2012
|
|
PACS: |
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
|
|
|
[1] Shen J T and Fan S 2005 Opt. Lett. 30 2001 [2] Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601 [3] Zhou L, Gong Z R, Li Y, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501 [4] Kolchin R, Oulton R F and Zhang X 2011 Phys. Rev. Lett. 106 113601 [5] Zheng H, Gauthier D J and Baranger H U 2011 Phys. Rev. Lett. 107 223601 [6] Longo P, Schmitteckert P and Busch K 2010 Phys. Rev. Lett. 104 023602 [7] Yan W B, Fan Q B and Zhou L 2012 Phys. Rev. A 85 015803 [8] Ji Z and Gao S 2012 Opt. Commun. 285 1302 [9] Roy D 2011 Phys. Rev. Lett. 106 053601 [10] Yan C H, Wei L F, Jia W Z and Shen J T 2011 Phys. Rev. A 84 045801 [11] Witthaut D and Sørensen A S 2010 N. J. Phys. 12 043052 [12] Wang Z H, Li Y, Zhou D L, Sun C P and Zhang P 2011 arXiv:1112.1491 [13] Tsoi T S and Law C K 2008 Phys. Rev. A 78 063832 [14] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J and Kimble H J 2006 Nature 443 671 [15] Choi Y S, Davanco M, Lee K H, Wang C F, Mack J, Blumenthal D and Hu E L 2007 Appl. Phys. Lett. 90 191108 [16] Srinivasan K and Painter O 2007 Nature 450 862 [17] Dayan B, Parkins A S, Aoki T, Ostby E, Vahala K J and Kimble H J 2008 Science 319 1062 [18] Aoki T, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J and Kimble H J 2009 Phys. Rev. Lett. 102 083601 [19] Chang D E, SSørensenørensen A S, Demler E A and Lukin M D 2007 Nature Phys. 3 807 [20] Li J and Yu R 2011 Opt. Express 19 20991 [21] Cheng M T 2011 Acta Phys. Sin. 60 117301 (in Chinese) [22] Bermel P, Rodriguez A, Johnson S G, Joannopoulos J D and Soljačić M 2006 Phys. Rev. A 74 043818 [23] Gong Z R, Ian H, Zhou L and Sun C P 2008 Phys. Rev. A 78 053806 [24] Zhou L, Dong H, Liu Y, Sun C P and Nori F 2008 Phys. Rev. A 78 063827 [25] Liao J Q, Gong Z R, Zhou L, Liu Y x, Sun C P and Nori F 2010 Phys. Rev. A 81 042304 [26] Cheng M T, Song Y Y, Luo Y Q, Ma X S and Wang P Z 2011 J. Mod. Opt. 58 1233 [27] Zang X and Jiang C 2010 J. Phys. B 43 215501 [28] Zang X and Jiang C 2010 J. Phys. B 43 065505 [29] Cheng M T, Luo Y Q, Song Y Y and Zhao G X 2010 Opt. Commun. 283 3721 [30] Shen J T and Fan S 2009 Phys. Rev. A 79 023837 [31] Shen J T and Fan S 2009 Phys. Rev. A 79 023838 [32] Li J, Yu R, Liu M, Ding C and Yang X 2012 Opt. Commun. 285 680 [33] Shen Y and Shen J T 2012 Phys. Rev. A 85 013801 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|