Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 054204    DOI: 10.1088/0256-307X/29/5/054204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology
REN Cheng1**,YANG Xing-Tuan1,ZHANG Shu-Lian2
1Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 102201
2Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084
Cite this article:   
REN Cheng**, YANG Xing-Tuan, ZHANG Shu-Lian 2012 Chin. Phys. Lett. 29 054204
Download: PDF(707KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce an angle measurement system based on laser-frequency splitting technology, which is capable of absolute angular displacement determination. The core part is a dual-frequency microchip Nd:YAG laser which has two quarter-wave plates in the laser resonator and outputs two orthogonally linearly polarized lights with variable intermode frequency. A rotation of one of the wave plates shifts the frequency difference between modes. This angular displacement can thus be examined by detecting the shift of the frequency difference. The principle of the dual-frequency laser is demonstrated. A setup developed to accomplish angular displacement determinations and the experimental results of using this setup are then presented.
Keywords: 42.55.Xi      42.62.Eh      06.30.Bp     
Received: 23 December 2011      Published: 30 April 2012
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  06.30.Bp (Spatial dimensions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/054204       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/054204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Cheng**
YANG Xing-Tuan
ZHANG Shu-Lian
[1] Schuda F J 1983 Rev. Sci. Instrum. 54 1648
[2] Zhang A and Huang P S 2001 Appl. Opt. 40 1617
[3] Chen F, Cao Z, Shen Q and Feng Y 2005 Appl. Opt. 44 5393
[4] Paolino P and Bellon L 2007 Opt. Commun. 280 1
[5] Kitchen S R and Hansen C D 2003 Appl. Opt. 42 51
[6] HP5529A Laser Measurement System: User's Guide (New York: Hewlett-Packard Company)
[7] Li S G et al 2005 Opt. Lett. 30 242
[8] Zhang S L and Bosch T 2007 Opt. Photon. News 18 38
[9] Holzapfel W and Settgast W 1989 Appl. Opt. 28 4585
[10] Ren C and Zhang S L 2009 J. Phys. D: Appl. Phys. 42 155107
[11] Li Y et al 2000 Opt. Eng. 39 3039
[12] Liu W X et al 2008 Appl. Opt. 47 5562
[13] Holzapfel W and Finnemann M 1993 Opt. Lett. 18 2062
[14] Zhang Y et al 2000 Meas. Sci. Technol. 11 1552
[15] Gudelev V G et al 2003 Appl. Phys. B 76 249
[16] Zhou L F and Zhang S L 2008 Laser Phys. 18 1517
[17] Yan Y et al 2012 Chin. Phys. Lett. 29 034204
[18] Zhu G L et al 2012 Chin. Phys. Lett. 29 024204
Related articles from Frontiers Journals
[1] ZHOU Zhi-Chao, TIAN Xue-Ping, DAI Qi-Biao, HAN Wen-Juan, HUANG Jia-Yin, LIU Jun-Hai, ZHANG Huai-Jin. The Laser Action of a Yb:CLNGG Crystal with an Efficiency Approaching Its Quantum Defect Imposed Limit[J]. Chin. Phys. Lett., 2012, 29(6): 054204
[2] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 054204
[3] JIANG Man,ZHANG Qiu-Lin,ZHOU Wen-Jia,ZHANG Jing,ZHANG Dong-Xiang,FENG Bao-Hua**. Self-Q-Switched and Mode-Locked Cr,Nd:YAG Laser under Direct 885 nm Diode Laser Pumping[J]. Chin. Phys. Lett., 2012, 29(5): 054204
[4] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 054204
[5] CAO Dong,DU Shi-Feng**,PENG Qin-Jun,BO Yong,XU Jia-Lin,GUO Ya-Ding,ZHANG Jing-Yuan,CUI Da-Fu,XU Zu-Yan. A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate[J]. Chin. Phys. Lett., 2012, 29(4): 054204
[6] YAO Bao-Quan, DUAN Xiao-Ming, YU Zheng-Ping, WANG Yue-Zhu. Actively Q−Switched Laser Performance of Holmium-Doped Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2012, 29(3): 054204
[7] YAN Ying, FAN Zhong-Wei, NIU Gang, YU Jin, ZHANG Heng-Li. A 46-W Laser Diode Stack End-Pumped Slab Amplifier with a Pulse Duration of Picoseconds[J]. Chin. Phys. Lett., 2012, 29(3): 054204
[8] ZHENG Yi-Bo, YAO Jian-Quan, ZHANG Lei, WANG Yuan, WEN Wu-Qi, JING Lei, DI Zhi-Gang. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers[J]. Chin. Phys. Lett., 2012, 29(2): 054204
[9] ZHU Guo-Li, JU You-Lun, YAO Bao-Quan, WANG Yue-Zhu. A Dual-Crystal Cavity Ho,Tm:GdVO4 Laser[J]. Chin. Phys. Lett., 2012, 29(2): 054204
[10] YU Yong-Ji, CHEN Xin-Yu, WANG Chao, WU Chun-Ting, LIU Rui, JIN Guang-Yong. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator[J]. Chin. Phys. Lett., 2012, 29(2): 054204
[11] CHEN Yan-Zhong, LIU Wen-Bin, BO Yong**, JIANG Ben-Xue, XU Jian, KOU Hua-Min, XU Yi-Ting, PAN Yu-Bai, XU Jia-Lin, GUO Ya-Ding, YANG Feng-Tu, PENG Qin-Jun, CUI Da-Fu, JIANG Dong-Liang, XU Zu-Yan . A 526 W Diode-Pumped Nd:YAG Ceramic Slab Laser[J]. Chin. Phys. Lett., 2011, 28(9): 054204
[12] WANG Yue-Zhu, ZHU Guo-Li**, JU You-Lun, YAO Bao-Quan . Efficient High Power Ho,Tm:GdVO4 Laser[J]. Chin. Phys. Lett., 2011, 28(9): 054204
[13] HE Jin-Ping, LIANG Xiao-Yan**, LI Jin-Feng, ZHENG Li-He, SU Liang-Bi, XU Jun . Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers[J]. Chin. Phys. Lett., 2011, 28(8): 054204
[14] XIE Shi-Yong, **, BO Yong, XU Jia-Lin, WANG Zhi-Chao, PENG Qin-Jun, CUI Da-Fu, XU Zu-Yan . A High Power Single Frequency Diode Side-Pumped Nd:YAG Ring Laser[J]. Chin. Phys. Lett., 2011, 28(8): 054204
[15] LIU Jie**, YANG Ji-Min, WANG Wei-Wei, ZHENG Li-He, SU Liang-Bi, XU Jun . Kerr-Lens Self-Mode-Locked Laser Characteristics of Yb:Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2011, 28(7): 054204
Viewed
Full text


Abstract