Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 054203    DOI: 10.1088/0256-307X/29/5/054203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Wave Optics in Discrete Excitable Media
GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**
College of Physics Science and Technology, Guangxi Normal University, Guilin 541004
Cite this article:   
GU Guo-Feng, WEI Hai-Ming, TANG Guo-Ning 2012 Chin. Phys. Lett. 29 054203
Download: PDF(2626KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Refraction and reflection of planar waves in a discrete excitable medium is numerically investigated by using the Greenberg–Hasting model. It is found that the medium is anisotropic because the speed of the planar wave depends on the excitability of the medium and the direction of wave propagation. The reflection, diffraction, refraction, double refraction and delayed refraction are observed by using the correct choice of model parameters. When the incident angle is larger than the critical angle, the reflection, which is a back refraction, takes place. The reflection angle changes with the incident angle. The refraction in certain situations obeys Snell's law. Also, our results demonstrate that the incident, refracted and reflected waves can have different periods. The reflected and refracted waves can disappear.
Received: 01 September 2011      Published: 30 April 2012
PACS:  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  47.54.-r (Pattern selection; pattern formation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/054203       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/054203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GU Guo-Feng
WEI Hai-Ming
TANG Guo-Ning
[1] Davidenko J M, Pertsov A M, Salomontsz R, Baxter W and Jalife J 1992 Nature 355 349
[2] Lechleiter J, Girard S, Peralta E and Clapham D 1991 Science 252 123
[3] Zhabotinsky A M, Eager M D and Epstein I R 1993 Phys. Rev. Lett. 71 1526
[4] Kosek J and Marek M 1995 Phys. Rev. Lett. 74 2134
[5] Hwang S C and Timothy H H 1996 Phys. Rev. E 54 3009
[6] Brazhnik P K and Tyson J J 1996 Phys. Rev. E 54 1958
[7] Pechenik L and Levine H 1998 Phys. Rev. E 58 2910
[8] Sainhas J and Dilão R 1998 Phys. Rev. Lett. 80 5216
[9] Skaar J 2006 Phys. Rev. E 73 026605
[10] Manz N, Ginn B T and Steinbock O 2006 Phys. Rev. E 73 066218
[11] Zhang R, Yang L, Zhabotinsky A M and Epstein I R 2007 Phys. Rev. E 76 016201
[12] Lü Y P, Gu G F, Lu H C, Dai Y and Tang G N 2009 Acta Phys. Sin. 58 2996 (in Chinese)
[13] Lü Y P, Gu G F, Lu H C, Dai Y and Tang G N 2009 Acta Phys. Sin. 58 7573 (in Chinese)
[14] Gu G F, Lü Y P and Tang G N 2010 Chin. Phys. B 19 050515
[15] Mornev O A 1984 Self-organization, Autowaves and Structures far from Equilibrium ed Krinsky V I (Berlin: Springer) pp 111–118
[16] Oosawa C, Fukuta Y, Natsume K and Kometani K 1996 J. Phys. Chem. 100 1043
[17] Kullai K K, Roszol L and Volford A 2005 Chem. Phys. Lett. 414 326
[18] Greenberg J M and Hastings S P 1978 SIAM J. Appl. Math. 34 515
[19] Zhang L S, Deng M Y, Kong L J, Liu M R and Tang G N 2009 Acta Phys. Sin. 58 4493 (in Chinese)
Related articles from Frontiers Journals
[1] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 054203
[2] Hong Liu, Jing-Ping Zhu, Kai Wang, Xiu-Hong Wang, Rong Xu. Three-Component Model for Bidirectional Reflection Distribution Function of Thermal Coating Surfaces[J]. Chin. Phys. Lett., 2016, 33(06): 054203
[3] LIAO Kang-Jia, WANG Mei-Ling, ZHANG Gui-Ying, ZHAO Kai-Feng. Time-Resolved Measurements of the Adsorption/Desorption of Rb Atoms on Octadecyltrichlorosilane Coated Surfaces[J]. Chin. Phys. Lett., 2015, 32(07): 054203
[4] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 054203
[5] LIU Guo-Chang, LI Chao, SHAO Jin-Jin, FANG Guang-You. Distributed Field Rotator Composed of Isolated Components[J]. Chin. Phys. Lett., 2014, 31(04): 054203
[6] JIN Da-Lin, HONG Jing-Song, XIONG Han. Dual Wideband Antenna for WLAN/WiMAX and Satellite System Applications Based on a Metamaterial Transmission Line[J]. Chin. Phys. Lett., 2012, 29(10): 054203
[7] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 054203
[8] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 054203
[9] YAN Ying-Zhan, JI Zhe, YAN Shu-Bin**, LIU Jun, XUE Chen-Yang, ZHANG Wen-Dong, XIONG Ji-Jun** . Enhancing the Robustness of the Microcavity Coupling System[J]. Chin. Phys. Lett., 2011, 28(3): 054203
[10] LIN Yan-He, ZHU Qi-Biao, ZHANG Yan,. Opposite Goos-Hänchen Displacements for TE- and TM-Polarized Beams Transmitting through a Slab of Indefinite Metamaterial[J]. Chin. Phys. Lett., 2010, 27(7): 054203
[11] SUN Wen-Feng, WANG Xin-Ke, ZHANG Yan. Measurement of Refractive Index for High Reflectance Materials with Terahertz Time Domain Reflection Spectroscopy[J]. Chin. Phys. Lett., 2009, 26(11): 054203
[12] LI Gang, ZHANG Yi, XU Yan-Ji, LIN Bin, LI Yu-Tong, ZHU Jun-Qiang. Measurement of Plasma Density Produced in Dielectric Barrier Discharge for Active Aerodynamic Control with Interferometer[J]. Chin. Phys. Lett., 2009, 26(10): 054203
[13] JIANG Tao, CUI Wan-Zhao, MA Wei, YUAN Yu, WANG Dong-Xing, RANLi-Xin. High Directive Cavity Antenna Based on One-Dimensional LHM-RHM Resonator[J]. Chin. Phys. Lett., 2009, 26(10): 054203
[14] ZHANG Zhi-Wei, WEN Ting-Dun, ZHANG Ji-Long,. A Novel Method for Enhancing Goos-Hänchen Shift in Total Internal Reflection[J]. Chin. Phys. Lett., 2009, 26(3): 054203
[15] CHENG Min, CHEN Rong. Positive and Negative Lateral Shifts from an Anisotropic Metamaterial Slab Backed by a Metal[J]. Chin. Phys. Lett., 2009, 26(1): 054203
Viewed
Full text


Abstract