GENERAL |
|
|
|
|
A Terahertz Wavemeter Based on a Fabry–Perot Interferometer Composed of Two Identical Ge Etalons |
MIAO Liang**,ZUO Du-Luo,CHENG Zu-Hai |
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 |
|
Cite this article: |
MIAO Liang, ZUO Du-Luo, CHENG Zu-Hai 2012 Chin. Phys. Lett. 29 050701 |
|
|
Abstract A simple and convenient terahertz wavemeter based on a Fabry–Perot interferometer (FPI) is presented. The interferometer is composed of two identical Ge etalons, which act as high-reflectance mirrors for terahertz waves. The transmission characteristics of the Ge FPI are analyzed using multiple-beam interference theory. The theoretical finesse of the FPI, defined as a ratio of 2π to the phase halfwidth of the transmission fringes, is larger than 12.5. Here, the wavemeter is used to measure the wavelengths of an optically pumped NH3 terahertz laser. The experimental results indicate that the measuring uncertainties are within ±1%. Higher accuracy can be expected if the power or pulse energy of the terahertz source is more stable.
|
|
Received: 05 December 2011
Published: 30 April 2012
|
|
PACS: |
07.60.Ly
|
(Interferometers)
|
|
07.57.Pt
|
(Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)
|
|
42.55.Lt
|
(Gas lasers including excimer and metal-vapor lasers)
|
|
|
|
|
[1] Chen Q, Jiang Z P, Xu G X and Zhang X C 2000 Opt. Lett. 25 1122 [2] Ferguson B and Zhang X C 2002 Nature Mater. 1 26 [3] Davies A G et al 2008 Mater. Today 11 18 [4] Appleby R and Wallace H B 2007 IEEE Trans. Antennas Propag. 55 2944 [5] Hor Y L, Federici J F and Wample R L 2008 Appl. Opt. 47 72 [6] Gross C T, Kiess J, Mayer A and Keilmann F 1987 IEEE J. Quantum Electron. 23 377 [7] Jiu Z X, Zuo D L, Miao L, Qi C C and Cheng Z H 2010 Chin. Phys. Lett. 27 024211 [8] Belkin M A et al 2008 Opt. Express 16 3242 [9] Jiang Y and Ding Y J 2007 Appl. Phys. Lett. 91 91108 [10] Jackson M, Noffke P and Zink L R 2004 Appl. Phys. B: Lasers Opt. 78 273 [11] Tochitsky S Y, Sung C, Trubnick S E, Joshi C and Vodopyanov K L 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 2509 [12] Biron D G, Danly B G, Temkin R J and Lax B 1981 IEEE J. Quantum Electron. 17 2146 [13] Naftaly M et al 2010 Opt. Commun. 283 1849 [14] Grischkowsky D et al 1990 J. Opt. Soc. Am. B: Opt. Phys. 7 2006 [15] Max Born and Emil Wolf 2005 Principles of Optics (Cambridge: Cambridge University) [16] Miao L, Zuo D, Jiu Z and Cheng Z 2010 Opt. Commun. 283 3171 [17] Hirose H, H Matsuda and Kon S 1981 Int. J. Infrared Millimeter Waves 2 1165 [18] Afsar M N, Honijk D D, Passchier W F and Goulon J 1977 IEEE Trans. Microw. Theor. Tech. 25 505 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|