Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050501    DOI: 10.1088/0256-307X/29/5/050501
GENERAL |
Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings
LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
LI Jian-Ping, YU Lian-Chun, YU Mei-Chen et al  2012 Chin. Phys. Lett. 29 050501
Download: PDF(981KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the synchronization of spatiotemporal chaos patterns between two delay-coupled excitable layers. It is found that zero-lag synchronization (ZLS) can be achieved by dynamical relay via a third mediating layer. Based on simulations with large parameter ranges, we investigate the influences of time delay and coupling strength on transition time. ZLS with a stronger coupling strength and shorter time delay appears to have a shorter transition time. This phenomenon has possible implications in network communication.
Received: 27 December 2011      Published: 30 April 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jian-Ping
YU Lian-Chun
YU Mei-Chen
CHEN Yong
[1] Gray C M, Konig P, Engel A K and Singer W 1989 Nature 338 334
[2] Engel A K, Kreiter A K, Konig P and Singer W 1991 Proc. Natl. Acad. Sci. 88 6048
[3] Eguiluz V M, Chialvo D R, Cecchi G A, Baliki M and Apkarian A V 2005 Phys. Rev. Lett. 94 018102
[4] Li Q, Chen Y and Wang Y H 2002 Phys. Rev. E 65 041916
[5] Martí A, Ponce M and Masoller C 2006 Physica A 371 104
[6] Zigzag M, Butkovski M, Englert A, Kinzel W and Kanter I 2009 Eurphys. Lett. 85 60005
[7] Verges M C, Pereira R F, Lopes S R, Viana R L and Kapitaniak T 2009 Physica A 388 2515
[8] Rosenblum M and Pikovsky A 2007 Phys. Rev. Lett. 98 064101
[9] Chen Y, Qin S M, Yu L C and Zhang S L 2008 Phys. Rev. E 77 032103
[10] Miramontes O, Sole R V and Goodwin B C 2001 Int. J. Bifur. Chaos 11 1655
[11] Fischer I, Vicente R, Buldu J M, Peil M and Mirasso C R 2006 Phys. Rev. Lett. 97 123902
[12] Englert A, Kinzel W, Aviad Y, Butkovski M, Reidler I, Zigzag M, Kanter I and Rosenbluh M 2010 Phys. Rev. Lett. 104 114102
[13] Shaw L B, Schwartz I B, Rogers E A and Roy R 2006 Chaos 16 015111
[14] Stacey W C and Durand D M 2000 J. Neurophysiol. 83 1394
[15] Schneidman E, Freedman B and Segev I 1998 Neural Comput. 10 1679
[16] Feki M 2003 Chaos Solitons Fractals 18 141
[17] Boccaletti S, Farini A and Arecchi F T 1997 Phys. Rev. E 55 4979
[18] Bowong S, Moukam Kakmeni F M and Siewe M 2007 Commun. Nonlin. Sci. Numerical Simulation 12 397
[19] Vicente R, Gollo L L, Mirasso C R, Fischer I and Pipa G 2008 Proc. Natl. Acad. Sci. 105 17157
[20] Sun X J and Lu Q S 2009 Chin. Phys. Lett. 26 060507
[21] Hildebrand M, Bär M and Eiswirth M 1995 Phys. Rev. Lett. 75 1503
[22] Wu H, How Z and Xin H 2010 Chaos 20 043140
[23] Gao J H and Zheng Z G 2007 Chin. Phys. Lett. 24 359
[24] Zigzag M, Butkovski M, Englert A, Kinzel W and Kanter I 2010 Phys. Rev. E 81 036215
[25] Barkley D 1991 Physica D 49 61
[26] K Pyragas 1998 Phys. Rev. E 58 3067
[27] Zhang Y, Lu S and Wang Y H 2009 Chin. Phys. Lett. 26 090501
[28] Santhanam M S and Arora S 2007 Phys. Rev. E 76 026202
[29] D'Huys O, Vicente R, Erneux T, Danckaert J and Fischer I 2008 Chaos 18 037116
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 050501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 050501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 050501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 050501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 050501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 050501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 050501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 050501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 050501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 050501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 050501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 050501
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 050501
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 050501
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 050501
Viewed
Full text


Abstract