Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050305    DOI: 10.1088/0256-307X/29/5/050305
GENERAL |
The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap
CAO Li-Juan1, 2,LIU Shu-Juan1**, LÜ Bao-Long1
1Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Graduate School of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
CAO Li-Juan, LIU Shu-Juan**, LÜ et al  2012 Chin. Phys. Lett. 29 050305
Download: PDF(1420KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We have studied the interference effect of a Bose–Einstein condensate expanding in a ring-shaped trap. The dynamic process of the condensate is analyzed based on the Gross–Pitaevskii equation. Our numerical results show that a petal-like interference pattern is formed during expansion within the ring-shaped trap. The petal number depends on the evolution time, which can be well explained by the interference of two flows of the condensate.

Keywords: 03.75.Dg      03.75.Kk      05.30.Jp     
Received: 05 April 2012      Published: 30 April 2012
PACS:  03.75.Dg (Atom and neutron interferometry)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050305       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Li-Juan
LIU Shu-Juan**
Bao-Long

[1] Warren W S, Rabitz H and Dahleh M 1993 Science 259 1581

[2] Leggett A J 2001 Rev. Mod. Phys. 73 307

[3] Bongs K and Sengstock K 2004 Rep. Prog. Phys. 67 907

[4] Henderson K, Ryu C, Mac Cormick C and Boshier M G 2009 New J. Phys. 11 043030

[5] Andrews M R, Townsend C G, Miesner H -J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637

[6] Kohstall C, Riedl S, Sánchez Guajardo E R, Sidorenkov L A, Hecker Denschlag J and Grimm R 2011 New J. Phys. 13 065027

[7] Zhou X F, Zhang S L, Zhou Z W, Malomed B A and Pu H 2012 Phys. Rev. A 85 023603

[8] Sauer J A, Barrett M D and Chapman M S 2001 Phys. Rev. Lett. 87 270401

[9] Gupta S, Murch K W, Moore K L, Purdy T P and Stamper-Kurn D M 2005 ibid. 95 143201

[10] Arnold A S, Garvie C S and Riis E 2006 Phys. Rev. A 73 041606

[11] Morizot O, Colombe Y, Lorent V, Perrin H and Garraway B M 2006 Phys. Rev. A 74 023617

[12] Ramanathan A, Wright K C, Muniz S R, Zelan M, Hill W T, Lobb C J, Hlmerson K, Phillips W D and Campbell G K 2011 Phys. Rev. Lett. 106 130401

[13] Sherlock B E, Gildemeister M, Owen E, Nugent E and Foot C J 2011 Phys. Rev. A 83 043408

[14] Ryu C, Andersen M F, Cladé P, Natarajan Vasant, Helmerson K, and Phillips W D 2007 Phys. Rev. Lett. 99 260401

[15] Graham D B, James M, Giuseppe S, Lara T -C and Donatella C 2011 Phys. Scr. T143 014008

[16] Heathcote W H, Nugent E, Sheard B T and Foot C J 2008 New J. Phys. 10 043012

[17] Hopkins A, Lev B and Mabuchi H 2004 Phys. Rev. A 70 053616

[18] Wright E M, Arlt J and Dholakia K 2000 Phys. Rev. A 63 013608

[19] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463

[20] Pethick C J and Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)

Related articles from Frontiers Journals
[1] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 050305
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 050305
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 050305
[4] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 050305
[5] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 050305
[6] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 050305
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 050305
[8] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 050305
[9] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 050305
[10] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 050305
[11] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 050305
[12] LIU Xun-Xu, ZHANG Xiao-Fei, ZHANG Peng. Vector Solitons and Soliton Collisions in Two-Component Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2010, 27(7): 050305
[13] DAN Lin, , YAN Hui, , WANG Jin, ZHAN Ming-Sheng,. Chip-Based Square Wave Dynamic Micro Atom Trap[J]. Chin. Phys. Lett., 2010, 27(5): 050305
[14] LUO Xiao-Bing, XIA Xiu-Wen, ZHANG Xiao-Fei,. Suppression of Chaos in a Bose-Einstein Condensate Loaded into a Moving Optical Superlattice Potential[J]. Chin. Phys. Lett., 2010, 27(4): 050305
[15] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 050305
Viewed
Full text


Abstract