Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050304    DOI: 10.1088/0256-307X/29/5/050304
GENERAL |
Protection of Two-Qubit Entanglement by the Quantum Erasing Effect
XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui
Department of Physics and Information Engineering, Huaihua University, Huaihua 418008
Cite this article:   
XIANG Shao-Hua, DENG Xiao-Peng, SONG Ke-Hui 2012 Chin. Phys. Lett. 29 050304
Download: PDF(549KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a scheme to save the entanglement of two spatially separated atoms, each located in a leaky cavity, through the quantum erasing method. It is shown that no matter whether the two atoms are in the pure or mixed state, one can robustly save their initial entanglement even if the number of erasing events is finite. We also briefly discuss the challenging aspect of implementing such a scheme.
Received: 13 September 2011      Published: 30 April 2012
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIANG Shao-Hua
DENG Xiao-Peng
SONG Ke-Hui
[1] Clauser J F et al 1969 Phys. Rev. Lett. 23 880
[2] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Collins G P 1992 Phys. Today 45 21
[5] Duan L M and Guo G C 1998 Phys. Rev. A 57 737
[6] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
[7] Mancini S and Bonifacio R 2001 Phys. Rev. A 64 042111
[8] Facchi P et al 2005 Phys. Rev. A 71 022302
[9] Maniscalco S et al 2008 Phys. Rev. Lett. 100 090503
[10] Das S and Agarwal G S 2010 Phys. Rev. A 81 052341
[11] Hu J Z and Wang X B 2010 Phys. Rev. A 82 062317
[12] Filip R 2003 Phys. Rev. A 67 014308
[13] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[14] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[15] Werner R F 1989 Phys. Rev. A 40 4277
[16] Peters N A et al 2004 Phys. Rev. Lett. 92 133601
[17] Barbieri M et al 2004 Phys. Rev. Lett. 92 177901
[18] Sauer J A et al 2004 Phys. Rev. A 69 051804
[19] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[20] Xiao Y F et al 2006 J. Phys. B: At. Mol. Opt. Phys. 39 485
[21] Xiao Y F, Zou X B and Guo G C, 2007 Phys. Rev. A 75 012310
[22] Rauschenbeutel A et al 2000 Science 288 2024
[23] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050304
[2] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 050304
[3] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 050304
[4] Yan Chang, Chun-Xiang Xu, Shi-Bin Zhang, Hai-Chun Wang, Li-Li Yan, Gui-Hua Han, Yuan-Yuan Huang, Zhi-Wei Sheng. Cryptanalysis and Improvement of the Multi-User QPCE Protocol with Semi-Honest Third Party[J]. Chin. Phys. Lett., 2016, 33(01): 050304
[5] SHENG Yu-Bo, FENG Zhao-Feng, OU-YANG Yang, QU Chang-Cheng, ZHOU Lan. Arbitrary Partially Entangled Three-Electron W State Concentration with Controlled-Not Gates[J]. Chin. Phys. Lett., 2014, 31(05): 050304
[6] YU Hong-Yi, LUO Yu, YAO Wang . The Nuclear Dark State under Dynamical Nuclear Polarization[J]. Chin. Phys. Lett., 2013, 30(7): 050304
[7] XIAO He-Ling, GUO Wang-Mei, WANG Xiao. Quantum Information Theoretical Analysis of Quantum Secret Sharing[J]. Chin. Phys. Lett., 2012, 29(11): 050304
[8] CHEN Zi-Hong, ZHANG Feng-Yang, SHI Ying, SONG He-Shan. Transferring Three-Dimensional Quantum States and Implementing a Quantum Phase Gate Based on Resonant Interaction between Distant Atoms[J]. Chin. Phys. Lett., 2012, 29(9): 050304
[9] LI Chun-Yan, , LI Yan-Song, ** . Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime[J]. Chin. Phys. Lett., 2011, 28(12): 050304
[10] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 050304
[11] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 050304
[12] LI Chun-Yan, LI Yan-Song** . Fault-Tolerate Three-Party Quantum Secret Sharing over a Collective-Noise Channel[J]. Chin. Phys. Lett., 2011, 28(2): 050304
[13] GU Bin, CHEN Yu-Lin, ZHANG Cheng-Yi, HUANG Yu-Gai. Efficient Polarization Entanglement Purification Using Spatial Entanglement[J]. Chin. Phys. Lett., 2010, 27(10): 050304
[14] JIANG Feng-Jian, SHI Ming-Jun, CHONG Bo, DU Jiang-Feng. Error Tolerance in Constructing Cluster States[J]. Chin. Phys. Lett., 2010, 27(8): 050304
[15] ZHOU Jian, YANG Ming, LU Yan, CAO Zhuo-Liang,. Nearly Deterministic Teleportation of a Photonic Qubit with Weak Cross-Kerr Nonlinearities[J]. Chin. Phys. Lett., 2009, 26(10): 050304
Viewed
Full text


Abstract