Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050302    DOI: 10.1088/0256-307X/29/5/050302
GENERAL |
The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation
YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei
Department of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
YAN Jia-Ren, ZHOU Jie, AO Sheng-Mei 2012 Chin. Phys. Lett. 29 050302
Download: PDF(445KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamics of a bright–bright vector soliton in cigar-shaped Bose–Einstein condensate trapping in a harmonic potential is studied. The interaction between bright solitons in different species with small separation is derived. Unlike the interaction between solitons of the same species, it is independent of the phase difference between the solitons, and may be of attraction or repulsion. In the former case, each soliton will oscillate about and pass through each other around the mass center of the system, which will also oscillate harmonically due to harmonic trapping potential.
Received: 13 October 2011      Published: 30 April 2012
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.45.Yv (Solitons)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Jia-Ren
ZHOU Jie
AO Sheng-Mei
[1] Kaup D J and Malamed B A 1993 Phys. Rev. A 48 599
[2] Ho T L and Shenoy V B 1996 Phys. Rev. Lett. 77 3276
[3] Esry B D, Green C H, Burke J P and Bohn J L 1997 Phys. Rev. Lett. 78 3594
[4] Pu H and N Bigelow N P 1996 Phys. Rev. Lett. 80 1130
[5] Myat C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
[6] Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A and Inguscio M 2001 Science 294 1320
[7] Thalhammer G, Barontini G, Sarlo L De, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
[8] Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
[9] Pěrez-Garcia V M and Beitia J B 2005 Phys. Rev. A 72 033620
[10] Liu X, Pu H, Xiong B, Liu W M and Gong J B 2009 Phys. Rev. A 79 013423
[11] Kaup D J 1990 Phys. Rev. A 42 5689
[12] Yan J R, Tang Y, Zhou G H and Chen Z H 1998 Phys. Rev. E 58 1064
[13] Adhikari S K 2005 Phys. Lett. A 346 179
[14] Yu H Y, Pan L X, Yan J R and Tang J Q 2009 J. Phys. B 42 025301
[15] Yan J R and Tang Y 1996 Phys. Rev. E 54 6816
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 050302
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 050302
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 050302
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 050302
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 050302
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 050302
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 050302
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 050302
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 050302
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 050302
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 050302
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 050302
[13] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 050302
[14] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 050302
[15] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 050302
Viewed
Full text


Abstract