Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050203    DOI: 10.1088/0256-307X/29/5/050203
GENERAL |
Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation
WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang
College of Mechatronics and Control Engineering, Hubei Normal University, Huangshi 435002
Cite this article:   
WU Jie, ZHAN Xi-Sheng**, ZHANG Xian-He et al  2012 Chin. Phys. Lett. 29 050203
Download: PDF(762KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A kind of discrete logistic model with distributed delays obtained by the Euler method is investigated, where the discrete delay τ is regarded as a parameter. By analyzing the associated characteristic equation, it is found that the stability of the positive equilibrium and Hopf occurs when τ crosses some critical value. Then the explicit formulae which determine the stability, direction and other properties of the bifurcating periodic solution are derived by using the theory of normal form and center manifold. Finally, numerical simulations are performed to verify and illustrate the analytical results.

Keywords: 02.30.Ks      02.30.Oz     
Received: 21 December 2011      Published: 30 April 2012
PACS:  02.30.Ks (Delay and functional equations)  
  02.30.Oz (Bifurcation theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050203       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jie
ZHAN Xi-Sheng**
ZHANG Xian-He
GAO Hong-Liang
Related articles from Frontiers Journals
[1] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 050203
[2] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 050203
[3] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 050203
[4] YOOER Chi-Feng, **, WEI Fang, XU Jian-Xue, ZHANG Xin-Hua . Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model[J]. Chin. Phys. Lett., 2011, 28(3): 050203
[5] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 050203
[6] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 050203
[7] DING Hui, LUO Liao-Fu. Kinetic Model of the Lysogeny/Lysis Switch of Phage λ[J]. Chin. Phys. Lett., 2009, 26(9): 050203
[8] YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. Bifurcation of a Saddle-Node Limit Cycle with Homoclinic Orbits Satisfying the Small Lobe Condition in a Leech Neuron Model[J]. Chin. Phys. Lett., 2009, 26(8): 050203
[9] YAN Shi-Wei, , WANG Qi, XIE Bai-Song, ZHANG Feng-Shou,. Oscillatory Activities in Regulatory Biological Networks and Hopf Bifurcation[J]. Chin. Phys. Lett., 2007, 24(6): 050203
[10] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 050203
[11] LIN Wen-Hui, ZHAO Ya-Pu. Dynamics Behaviour of Nanoscale Electrostatic Actuators [J]. Chin. Phys. Lett., 2003, 20(11): 050203
[12] TIAN Yu-chu. Adaptive Control of a Chaotic System with Delay [J]. Chin. Phys. Lett., 1998, 15(7): 050203
Viewed
Full text


Abstract