Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050202    DOI: 10.1088/0256-307X/29/5/050202
GENERAL |
Lax Pairs for Discrete Integrable Equations via Darboux Transformations
CAO Ce-Wen**,ZHANG Guang-Yao
Department of Mathematics, Zhengzhou University, Zhengzhou 450001
Cite this article:   
CAO Ce-Wen**, ZHANG Guang-Yao 2012 Chin. Phys. Lett. 29 050202
Download: PDF(362KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler–Bobenko–Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations.

Keywords: 02.30.Ik      02.30.Jr      04.20.Jb     
Received: 27 December 2011      Published: 30 April 2012
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Ce-Wen**
ZHANG Guang-Yao
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 050202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 050202
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 050202
[4] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 050202
[5] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 050202
[6] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 050202
[7] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 050202
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 050202
[9] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 050202
[10] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 050202
[11] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 050202
[12] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 050202
[13] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 050202
[14] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 050202
[15] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 050202
Viewed
Full text


Abstract