Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 048903    DOI: 10.1088/0256-307X/29/4/048903
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks
LI Ping1,2**, ZHANG Jie3**, XU Xiao-Ke4,5, SMALL Michael6**
1Center for Networked Systems, School of Computer Science, Southwest Petroleum University, Chengdu 610500
2State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500
3Center for Computational Systems Biology, Fudan University, Shanghai 200433
4Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
5School of Communication and Electronic Engineering, Qingdao Technological University, Qingdao 266520
6School of Mathematics and Statistics, University of Western Australia, Crawley, WA 6009, Australia
Cite this article:   
LI Ping, ZHANG Jie, XU Xiao-Ke et al  2012 Chin. Phys. Lett. 29 048903
Download: PDF(518KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We provide a theoretical analysis of node importance from the perspective of dynamical processes on networks. In particular, using Markov chain analysis of the susceptible-infected-susceptible (SIS) epidemic model on networks, we derive the node importance in terms of dynamical behaviors on network in a theoretical way. It is found that this quantity happens to be the eigenvector centrality under some conditions, which bridges the topological centrality measure of the nodes with the dynamical influence of the nodes for the dynamical process. We furthermore discuss the condition under which the eigenvector centrality is valid for dynamical phenomena on networks.
Received: 11 January 2012      Published: 04 April 2012
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/048903       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/048903
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ping
ZHANG Jie
XU Xiao-Ke
SMALL Michael
[1] Wasserman S 1994 Social Network Analysis: Methods and Applications (Cambridge: Cambridage University)
[2] Watts D J and Dodds P S 2007 J. Consumer Res. 34 441
[3] Zhuo Z, Cai S M, Fu Z Q and Zhang J 2011 Phys. Rev. E 84 031923
[4] Zhang J, Zhou C, Xu X and Small M 2010 Phys. Rev. E 82 026116
[5] Crucitti P, Latora V and Marchiori M 2004 Phys. Rev. E 69 045104
[6] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[7] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nature Phys. 6 888
[8] Klemm K, Serrano M, Eguiluz V M and Miguel M S 2012 Sci. Rep. 2 292
[9] Masuda N, Kawamura Y and Kori H 2009 Phys. Rev. E 80 046114
[10] Masuda N and Kori H 2010 Phys. Rev. E 82 056107
[11] Zhang J, Xu X K, Li P, Zhang K and Small M 2011 Chaos 21 016107
[12] Katz L 1953 Psychometrika 18 39
[13] Freeman L C 1979 Social networks 1 215
[14] Bonacich P 1972 J. Math. Sociol. 2 113
[15] Bonacich P 2007 Social Networks 29 555
[16] Lohmann G, Margulies D S, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A and Turner R 2010 PloS one 5 e10232
[17] Özgür A, Vu T, Erkan G and Radev D R 2008 Bioinformatics 24 i277
[18] Jing Y and Baluja S 2008 Proceeding of the 17th International Conference on World Wide Web (New York, USA 21–25 April 2008) p 307
[19] Ganguly N and Kharagpur I I T 2006 IMSc Workshop on Modeling Infectious Diseases (Chennai, India 4–6 September 2006)
[20] Moreno Y, Pastor Satorras R and Vespignani A 2002 Eur. Phys. J. B 26 521
[21] Moreno Y, Nekovee M and Pacheco A F 2004 Phys. Rev. E 69 066130
[22] Zhou T, Fu Z Q and Wang B H 2005 Prog. Nat. Sci. 16 12
[23] Zhang H, Zhang J, Zhou C, Small M and Wang B 2010 New J. Phys. 12 023015
[24] G ómez S, Arenas A, Borge Holthoefer J, Meloni S and Moreno Y 2010 Europhys. Lett. 89 38009
[25] Wang Y, Chakrabarti D, Wang C and Faloutsos C 2003 22nd International Symposium on Reliable Distributed Systems (Florence, Italy 6–8 October 2003) p 25
[26] Gómez Gardeñes J and Moreno Y 2006 Phys. Rev. E 73 056124
[27] Hu H B and Wang X F 2008 Physica A 387 3769
[28] Farkas I J, Derenyi I, Barabasi A L and Vicsek T 2001 Phys. Rev. E 64 026704
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 048903
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 048903
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 048903
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 048903
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 048903
[6] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 048903
[7] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 048903
[8] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 048903
[9] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 048903
[10] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 048903
[11] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 048903
[12] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 048903
[13] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 048903
[14] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 048903
[15] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 048903
Viewed
Full text


Abstract