Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 048702    DOI: 10.1088/0256-307X/29/4/048702
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
The Efficiency of a Small-World Functional Brain Network
ZHAO Qing-Bai1,ZHANG Xiao-Fei1,SUI Dan-Ni2,ZHOU Zhi-Jin1,CHEN Qi-Cai3,TANG Yi-Yuan4,5**
1Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), and Hubei Human Development and Mental Health Key Laboratory, School of Psychology, Central China Normal University, Wuhan 430079
2Foreign Language College, Shenyang University, Shenyang 110044
3College of Life Science, Central China Normal University, Wuhan, 430079
4Institute of Neuroinformatics and Laboratory for Brain and Mind, Dalian University of Technology, Dalian 116024
5Department of Psychology, University of Oregon, Eugene, OR 97403, USA
Cite this article:   
ZHAO Qing-Bai, ZHANG Xiao-Fei, SUI Dan-Ni et al  2012 Chin. Phys. Lett. 29 048702
Download: PDF(740KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task. Functional brain networks are constructed by multichannel event-related potential data, in which the electrodes are the nodes and the functional connectivities between them are the edges. The results show that the correlation between small-world measures and reaction time is task-specific, such that in global imagery, there is a positive correlation between the clustering coefficient and reaction time, while in local imagery the average path length is positively correlated with the reaction time. This suggests that the efficiency of a functional brain network is task-dependent.
Received: 08 January 2012      Published: 04 April 2012
PACS:  87.19.le (EEG and MEG)  
  64.60.aq (Networks)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/048702       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/048702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Qing-Bai
ZHANG Xiao-Fei
SUI Dan-Ni
ZHOU Zhi-Jin
CHEN Qi-Cai
TANG Yi-Yuan
[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Li L and Jin Z 2010 Chin. Phys. Lett. 28 048701
[3] Yu Q B, Sui J, Rachakonda S, He H, Pearlson G and Calhoun V D 2011 Front. Syst. Neurosci. 5 7
[4] Yu Q B, Sui J, Rachakonda S, He H, Pearlson G, Kiehl K A and Calhoun V D 2011 PLoS One 6 e25423
[5] Latora V and Marchiori M 2001 Phys. Rev. Lett. 87 198701
[6] Sporns O and Zwi J D 2004 Neuroinformatics 2 145
[7] Kaiser M and Hilgetag C C 2006 Plos. Comput. Biol. 2 805
[8] Achard S and Bullmore E 2007 PLoS Comput Biol 3 e17
[9] Achard S, Salvador R, Whitcher B, Suckling J and Bullmore E 2006 J. Neurosci. 26 63
[10] Jensen A R 2006 Clocking the mind: Mental chronometry and individual differences. Amsterdam: Elsevier
[11] Nittono H, Suehiro M and Hori T 2002 Int J Psychophysiol 44 219
[12] Wu J, Mai X, Chan C C, Zheng Y and Luo Y 2006 Psychophysiology 43 592
[13] Friston K J, Frith C D, Liddle P F and Frackowiak R S 1993 J. Cereb. Blood Flow Metab. 13 5
[14] De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Tocci A, Salinari S, Marciani M G, Witte H, Colosimo A and Babiloni F 2008 IEEE Trans. Neural Syst. Rehabil. Eng. 16 442
[15] Ferri R, Rundo F, Bruni O, Terzano M G and Stam C J 2007 Clin. Neurophysiol. 118 449
[16] Ferri R, Rundo F, Bruni O, Terzano M G and Stam C J 2008 Clin. Neurophysiol. 119 2026
[17] Humphries M and Gurney K 2008 PLoS One 3 e0002051
[18] Eguiluz V M, Chialvo D R, Cecchi G A, Baliki M and Apkarian A V 2005 Phys. Rev. Lett. 94 018102
[19] Newman M E J 2004 Phys. Rev. E 69 066133
[20] LagoFernandez L F, Huerta R, Corbacho F and Siguenza J A 2000 Phys. Rev. Lett. 84 2758
[21] Honey C J, Kotter R, Breakspear M and Sporns O 2007 Proc. Natl. Acad. Sci. U. S.A. 104 10240
[22] Zhou C S, Zemanova L, Zamora G, Hilgetag C C and Kurths J 2006 Phys. Rev. Lett. 97 238103
[23] Zhou C S, Zemanova L, Zamora G, Hilgetag C C and Kurths J 2007 New J. Phys. 9 178
[24] Achard S, Bassett D S, Meyer Lindenberg A and Bullmore E 2008 Phys. Rev. E 77 036104
[25] Bassett D S, Meyer Lindenberg A, Achard S, Duke T and Bullmore E 2006 Proc. Natl. Acad. Sci. U. S.A. 103 19518
[26] Sui D N, Zhao Q B and Tang Y Y 2010 Chin. Phys. Lett. 27 018702
[27] Bullmore E and Sporns O 2009 Nature Rev. Neurosci. 10 186
Related articles from Frontiers Journals
[1] LI Ling**, JIN Zhen-Lan . Scale-Free Brain Networks Based on the Event-Related Potential during Visual Spatial Attention[J]. Chin. Phys. Lett., 2011, 28(4): 048702
[2] SUI Dan-Ni, ZHAO Qing-Bai, TANG Yi-Yuan,. Application of Small-World Measures to Multichannel Event-Related Potential Activity during Generation of Global and Local Imagery[J]. Chin. Phys. Lett., 2010, 27(1): 048702
Viewed
Full text


Abstract