CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
First-Principles Study of Doped Half-Metallic Spinels: Cu0.5Zn0.5Cr2S4, Cu0.5Cd0.5Cr2S4, Li0.5Zn0.5Cr2O4 and Li0.5Zn0.5Cr2S4 |
ZHOU Tie-Ge,LIU Zhi-Qiang**,ZUO Xu |
College of Information Technical Science, Nankai University, Tianjin 300071 |
|
Cite this article: |
ZHOU Tie-Ge, LIU Zhi-Qiang, ZUO Xu 2012 Chin. Phys. Lett. 29 047503 |
|
|
Abstract Electronic structure and magnetic properties of Cu0.5Zn0.5Cr2S4, Cu0.5Cd0.5Cr2S4, Li0.5Zn0.5Cr2O4 and Li0.5Zn0.5 Cr2S4 are investigated using the first−principles calculation based on the density functional theory. GGA+U exchange correlation is used in the calculation to correct the effective Coulomb repulsion energy of Cr underestimated by LSDA or GGA. The calculation results reveal that half−metallic Cu0.5Zn0.5Cr2S4 and Cu0.5Cd0.5Cr2S4 can be achieved by doping CuCr2S4 with Zn or Cd, though CuCr2S4 is not half−metallic. Half-metallic LiCr2O4 is experimentally unstable, but half−metallic Li0.5Zn0.5Cr2O4 and Li0.5Zn0.5Cr2S4 can be achieved by doping Li into experimentally stable ZnCr2O4 and ZnCr2S4, though ZnCr2O4 and ZnCr2S4 are not half−metallic. The influence of +U on the electronic structure and half-metallicity of the doped systems is also presented.
|
|
Received: 15 November 2011
Published: 04 April 2012
|
|
PACS: |
75.50.-y
|
(Studies of specific magnetic materials)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
|
|
[1] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024[2] Kämper K P, Schmitt W, Güntherodt G, Gambino R J and Ruf R 1987 Phys. Rev. Lett. 59 2788[3] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323[4] Katsnelson M I, Irkhin V Yu, Chioncel L, Lichtenstein A I and de Groot R A 2008 Rev. Mod. Phys. 80 315[5] Jia X T, Qin M H and Yang W 2009 J. Phys. D: Appl. Phys. 42 235001[6] Özdoğan K, Şaş ıoğlu E and Galanakis I 2009 J. Phys. D: Appl. Phys. 42 085003[7] Li G N and Jin Y J 2009 Chin. Phys. Lett. 26 107101[8] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yun J N 2009 Chin. Phys. Lett. 26 016105[9] Horikawa J I, Hamajima T, Ogata F, Kambara T and Gondaira K I 1982 J. Phys. C: Solid State Phys. 15 2613[10] Saha Dasgupta T, De Raychaudhury M and Sarma D D 2007 Phys. Rev. B 76 054441[11] Wang Y -H A, Gupta A, Chshiev M and Butler W H 2008 Appl. Phys. Lett. 92 062507[12] Feng M, Cao X W, Yang A, Zuo X, Vittoria C and Harris V G 2009 IEEE Trans. Magn. 45 3985[13] Lauer M, Valenti R, Kandpal H C and Seshadri R 2004 Phys. Rev. B 69 075117[14] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251[15] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15[16] Jeng H T and Guo G Y 2003 Phys. Rev. B 67 094438[17] Korotin M A, Anisimov V I, Khomskii D I and Sawatzky G A 1998 Phys. Rev. Lett. 80 4305 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|