CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
The Impact of HCl Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors |
XUE Bai-Qing,CHANG Hu-Dong,SUN Bing,WANG Sheng-Kai,LIU Hong-Gang** |
Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 |
|
Cite this article: |
XUE Bai-Qing, CHANG Hu-Dong, SUN Bing et al 2012 Chin. Phys. Lett. 29 046801 |
|
|
Abstract Surface treatment for Ge substrates using hydrogen chlorine cleaning and chemical passivation are investigated on AuTi/Al2O3/Ge metal−oxide-semiconductor capacitors. After hydrogen chlorine cleaning, a smooth Ge surface almost free from native oxide is demonstrated by atomic force microscopy and x-ray photoelectron spectroscopy observations. Passivation using a hydrogen chlorine solution is found to form a chlorine-terminated surface, while aqueous ammonium sulfide pretreatment results in a surface terminated by Ge-S bonding. Compared with chlorine-passivated samples, the sulfur-passivated ones show less frequency dispersion and better thermal stability based on capacitance-voltage characterizations. The samples with HCl pre-cleaning and (NH4)2S passivation show less frequency dispersion than the HF pre−cleaning and (NH4)2S passivated ones. The surface treatment process using hydrogen chlorine cleaning followed by aqueous ammonium sulfide passivation demonstrates a promising way to improve gate dielectric/Ge interface quality.
|
|
Received: 14 November 2011
Published: 04 April 2012
|
|
PACS: |
68.35.Ct
|
(Interface structure and roughness)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.30.Tv
|
(Field effect devices)
|
|
|
|
|
[1] Kamata Y 2008 Mater. Today 11 30[2] Shang H et al 2006 IBM J. Res. Develop. 50 377[3] Prabhakaran K et al 2000 Appl. Phys. Lett. 76 2244[4] Sun S Y et al 2006 App. Phys. Lett. 88 021903[5] Li X F et al 2011 Appl. Surf. Sci. 257 4589[6] Xu J P et al 2006 IEEE Electron. Device Lett. 27 439[7] Li C X et al 2010 Solid State Electron. 54 675[8] Bai W P et al 2005 IEEE Electron. Device Lett. 26 378[9] Frank M M et al 2006 Appl. Phys. Lett. 89 112905[10] Xie R L and Zhu C X 2007 IEEE Electron. Device Lett. 28 11[11] Shalvoy R B et al 1977 Phys. Rev. B 15 1680[12] Thathachary A V et al 2010 App. Phys. Lett. 96 152108[13] Lyman P F et al 2000 Surf. Sci. Lett. 462 L594 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|