Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 044301    DOI: 10.1088/0256-307X/29/4/044301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Attenuation of Rayleigh Surface Waves in a Porous Material
DEBBOUB Salima**,BOUMAÏZA Youcef,BOUDOUR Amar,TAHRAOUI Tarek
Laboratory of Materials Elaboration and Analysis, Department of Physics, Faculty of Sciences, University of Annaba, P.O. BOX 12, 23000 Annaba, Algeria
Cite this article:   
DEBBOUB Salima, BOUMAÏ, ZA Youcef et al  2012 Chin. Phys. Lett. 29 044301
Download: PDF(558KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using acoustic microscopy at higher frequency, we show the velocity evolutions of surface acoustic waves, in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer. The velocities are obtained from different V(z) curves, which are determined experimentally at a frequency of 600 MHz. The analysis of V(z) data yields attenuation that is directly dependent on porosity. On the other hand, αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.
Received: 30 November 2011      Published: 04 April 2012
PACS:  43.35.Pt (Surface waves in solids and liquids)  
  81.70.Cv (Nondestructive testing: ultrasonic testing, photoacoustic testing)  
  62.65.+k (Acoustical properties of solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/044301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/044301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DEBBOUB Salima
BOUMAÏ
ZA Youcef
BOUDOUR Amar
TAHRAOUI Tarek
[1] In C W et al 2009 NDT& E Int. 42 610
[2] Dai Z J, Kuang Z B and Zhao S X 2006 J. Sound Vib. 298 319
[3] Allard J F et al 2009 J. Appl. Phys. 106 014906
[4] Jillian M Buriak 2006 Phil. Trans. R. Soc. A 364 217
[5] Sciacca B et al 2009 Sens. Actuator B 137 467
[6] Tahraoui T, Boumaïza Y and Boudour A 2010 Optoelectron. Adv. Mater. 4 1771
[7] Tahraoui T, Boudour A and Boumaïza Y 2009 C. R. Physique 10 227
[8] Briggs G A D and Kolosov O V 2010 Acoustic Microscopy (New York: Oxford University) chap 8 p 131
[9] Bouhedja S et al 2005 Phys. Status Solidi A 202 1025
[10] Da Fonseca R J M et al 1993 Adv. Mater. 5 508
[11] Havelock D, Kuwano S and Vorländer M 2008 Handbook of Signal Processing in Acoustics (New York: Springer) chap 3 p 38
[12] Lee Y C, Kim J O and Achenbach J D 1995 IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 42 253
Related articles from Frontiers Journals
[1] LI Xiu-Ming, ZHANG Rui, HUANG Nai-Xing, LÜ, Tian-Quan, CAO Wen-Wu. Surface Acoustic Wave Propagation in Relaxor-Based Ferroelectric Single Crystals 0.93Pb(Zn1/3Nb2/3)O3−0.07PbTiO3 Poled along [011]c[J]. Chin. Phys. Lett., 2012, 29(2): 044301
[2] ZHANG Wei, LI Xiu-Ming, ZHANG Rui, HUANG Nai-Xing, CAO Wen-Wu,. Numerical Calculation of SAW Propagation Properties at the x-Cut of Ferroelectric PMN-33%PT Single Crystals[J]. Chin. Phys. Lett., 2009, 26(6): 044301
[3] QIAO Dong-Hai, WANG Cheng-Hao, WANG Zuo-Qing. Focusing of Surface Acoustic Wave on a Piezoelectric Crystal[J]. Chin. Phys. Lett., 2006, 23(7): 044301
[4] CHEN Zhen, LU Da-Cheng, WANG Xiao-Hui, LIU Xiang-Lin, HAN Pei-De, YUAN Hai-Rong, WANG Du, WANG Zhan-Guo, HE Shi-Tang, LI Hong-Lang, YAN Li, CHEN Xiao-Yang. Surface Acoustic Wave Velocity and Electromechanical Coupling Coefficient of GaN Grown on (0001) Sapphire by Metal-Organic Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2001, 18(10): 044301
[5] TONG Xiao-Jun, WANG Wei-Biao, ZHOU Ran, ZHANG De, QIN Hou-Rong. Propagation Properties of Quasi-longitudinal Leaky Surface Acoustic Wave on Y-Rotated Cut Quartz Substrates[J]. Chin. Phys. Lett., 2000, 17(9): 044301
[6] WANG Xin-Long, CHEN Yi-Huang, WEI Rong-Jue,. Internal Subharmonic Resonance in Faraday Experiment[J]. Chin. Phys. Lett., 2000, 17(8): 044301
[7] WANG Cheng-hao, LIU Yuan, HE Shi-tang, HUANG Xin. High Velocity Acoustical Head Wave on Surface of ST Quartz[J]. Chin. Phys. Lett., 1999, 16(10): 044301
Viewed
Full text


Abstract