Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 044214    DOI: 10.1088/0256-307X/29/4/044214
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits
GAO Gui-Long1,SONG Fu-Quan2,HUANG Shou-Sheng1,WANG Yan-Wei1,FAN Zhi-Qiang1,YUAN Xian-Zhang1,JIANG Nian-Quan1**
1College of Physics and Electric Information, Wenzhou University, Wenzhou 325035
2Department of Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
GAO Gui-Long, SONG Fu-Quan, HUANG Shou-Sheng et al  2012 Chin. Phys. Lett. 29 044214
Download: PDF(547KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an effective method to produce four-qubit χ-type entangled states by using flux qubits coupled to an LC circuit which acts as a quantum data bus (QDB). In our scheme, the interaction is mediated by the exchange of virtual rather than real photons because of the large detuning between flux qubits and QDB, and then QDB-induced loss can be effectively avoided. The experimental feasibility of the scheme is also presented.
Received: 16 November 2011      Published: 04 April 2012
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/044214       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/044214
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Gui-Long
SONG Fu-Quan
HUANG Shou-Sheng
WANG Yan-Wei
FAN Zhi-Qiang
YUAN Xian-Zhang
JIANG Nian-Quan
[1] Beth T, Leuchs G and Wiley J 2005 Quantum Information Processing (Wiley Online Library)
[2] Zdotukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[3] Wang M Y and Yan F L 2011 Chin. Phys. Lett. 28 060301
[4] Schaetz T et al 2004 Phys. Rev. Lett. 93 040505
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Greenberger D M, Horne M A and Zeilinger A 1989 Bell's Theorem, Quantum Theory, and Conceptions of the Universe ed Kafatos M (The Netherlands: Kluwer Academic) pp 69–72
[7] W Dür, G Vidal and J Cirac I 2000 Phys. Rev. A 62 062314
[8] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[9] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[10] Jiang N Q, Jing B Q, Zhang Y and Cai G C 2008 Europhys. Lett. 84 14002
[11] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[12] Li G X 2006 Phys. Rev. A 74 055801
[13] Gerry C C and Campos R A 2003 Phys. Rev. A 68 025602
[14] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[15] Wu C, Yeo Y, Kwek L and Oh C 2007 Phys. Rev. A 75 032332
[16] Xue L, Wu L, Cai G C and Jiang N Q 2011 Int. J. Quantum Inform. 9 875
[17] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[18] Xiu X M, Dong L, Gao Y J and Chi F 2009 Commun. Theor. Phys. 52 60
[19] Xiu X M, Dong H K, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 2457
[20] Gao G 2010 Phys. Scr. 81 065005
[21] Xiu X M, Dong L and Gao Y J 2011 Opt. Commun. 284 2065
[22] Wang X W, Xia L X, Wang Z Y and Zhang D Y 2010 Opt. Commun. 283 1196
[23] Wang X W and Yang G J 2008 Phys. Rev. A 78 024301
[24] Xiu L 2010 Chin. Phys. Lett. 27 044207
[25] He Y and Jiang N Q 2010 Opt. Commun. 283 1558
[26] Wang X W 2009 Opt. Commun. 282 1052
[27] Liu G Y and Kuang L M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165505
[28] Wang H F and Zhang S 2009 Phys. Rev. A 79 042336
[29] Shen H W, Wang H F, Ji X and Zhang S 2009 Chin. Phys. B 18 3706
[30] Makhlin Y et al 2001 Rev. Mod. Phys. 73 357
[31] T Yamamoto et al 2003 Nature 425 941
[32] Orlando T P et al 1999 Phys. Rev. B 60 15398
[33] Bialczak R C et al 2011 Phys. Rev. Lett. 106 060501
[34] Katz N et al 2008 Phys. Rev. Lett. 101 200401
[35] DiCarlo L et al 2010 Nature 467 574
[36] DiCarlo L et al 2009 Nature 460 240
[37] Wang Y D et al 2005 Phys. Rev. B 72 172507
[38] Mooij H 2005 Science 307 1210
[39] Liu Y X et al 2006 Phys. Rev. Lett. 96 067003
[40] You J Q et al 2007 Phys. Rev. B 75 104516
[41] Clarke J and Wilhelm F K 2008 Nature 453 1031
[42] Greenberg Y S, Il'ichev E and Izmalkov A 2005 Europhys. Lett. 72 880
[43] Liu Y X et al 2005 Phys. Rev. Lett. 95 087001
[44] Liu Y X et al 2007 Phys. Rev. B 76 144518
[45] Liu Y X, Sun C P and Nori F 2006 Phys. Rev. A 74 052321
[46] Zheng S B 2003 Phys. Rev. A 68 035801
[47] Ye L and Fang B L 2008 Int. J. Quantum Inform. 6 517
[48] Chiorescu I et al 2003 Science 299 1869
[49] Fedorov A et al 2010 Phys. Rev. Lett. 105 060503
[50] Leek P et al 2010 Phys. Rev. Lett. 104 100504
[51] Yang C P 2010 Phys. Rev. A 82 054303
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 044214
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 044214
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 044214
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 044214
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 044214
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 044214
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 044214
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 044214
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 044214
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 044214
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 044214
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 044214
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 044214
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 044214
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 044214
Viewed
Full text


Abstract