ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Effect of Rotational Excitation on Stereodynamics for the Reactive Collision Between N(2D) and H2 |
CHENG Jie,YUE Xian-Fang**,FENG Hai-Ran |
Department of Physics and Information Engineering, Jining University, Jining 273155 |
|
Cite this article: |
CHENG Jie, YUE Xian-Fang, FENG Hai-Ran 2012 Chin. Phys. Lett. 29 043101 |
|
|
Abstract Effect of rotational excitation on stereodynamics for the N( 2D)+H2(v=0, j=0−5)→NH(v', j')+H collision reactions is investigated by employing the quasiclassical trajectory method. Based on an accurate 12A" potential energy surface, three angular distributions P(θr ), P(φr ), P(θr,φr ), and polarized−dependent differential cross section 2π/σ dσ00 /dωt are calculated at a collision energy of 5.1 kcal/mol. It is found that the P(θr ) distribution has a distinct peak at about θr=90°. The P(φr ) distribution has a small peak at about φr=270° and no peak at about φr=90°. This implies that the product angular momentum j' is not only aligned perpendicular to k, but also orientated to the negative direction of the y axis. The product rotational alignment and orientation become increasingly weaker with an increase of the rotational quantum number j of H2. Analysis of trajectory propagation demonstrates that the title collision reaction has a dominant indirect insertion mechanism and a minor direct H-abstraction mechanism.
|
|
Received: 29 October 2011
Published: 04 April 2012
|
|
|
|
|
|
[1] Miller J A and Bowman C T 1989 Prog. Energy Combust. Sci. 15 287[2] Pickles J B and Williams D A 1977 Astrophys. Space Sci. 52 453[3] Suzuki T et al 1993 J. Chem. Soc. Faraday Trans. 89 995[4] Umemoto H, Asai T and Kimura Y 1997 J. Chem. Phys. 106 4985[5] Umemoto H, Terada N and Tanaka K 2000 J. Chem. Phys. 112 5762[6] Balucani N et al 2002 Phys. Rev. Lett. 89 013201[7] Balucani N et al 2006 J. Phys. Chem. A 110 817[8] Honvault P and Launay J M 1999 J. Chem. Phys. 111 6665[9] Ho T S et al 2003 J. Chem. Phys. 119 3063[10] Zhou S L, Xie D Q, Lin S Y and Guo H 2008 J. Chem. Phys. 128 224316[11] Zhou S L et a 2009 J. Chem. Phys. 130 184307[12] Li Z et al 2009 J. Chem. Phys. 131 124313[13] Li Z et al 2011 J. Chem. Phys. 134 134303[14] Chu T S, Han K L and Varandas A J C 2006 J. Phys. Chem. A 110 1666[15] Yue X F, Zhang Y Q, Feng H R and Wu E L 2010 J. Mol. Struct.: Theochem. 955 61[16] Yue X F, Cheng J, Feng H R, Li H and Emilia L W 2010 Chin. Phys. B 19 043401[17] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699[18] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446[19] Kong H, Liu X G, Xu W W and Zhang Q G 2009 Chin. Phys. Lett. 26 053102[20] Zhao J, Xu Y and Meng Q T 2009 Chin. Phys. B 19 063403[21] Liu H R, Liu X G, Sun H Z and Zhang Q G 2010 Chin. Phys. Lett. 27 103101[22] Li X H et al 2010 Phys. Chem. Chem. Phys. 12 7942[23] Xiao J, Yang C L, Wang M S and Ma X G 2011 Chin. Phys. Lett. 28 013101[24] Cheng J and Yue X F 2011 Chin. Phys. Lett. 28 083102[25] Li R J et al 1994 Chem. Phys. Lett. 220 281 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|