NUCLEAR PHYSICS |
|
|
|
|
Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach |
GAN Sheng-Xin1,2,ZUO Wei1**,U. Lombardo3 |
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
2Graduate School of Chinese Academy of Sciences, Beijing 100049
3Department of Physics and Astrophysics, Catania University, Via Santa Sofia 64, I-95123, Italy |
|
Cite this article: |
GAN Sheng-Xin, ZUO Wei, U. Lombardo 2012 Chin. Phys. Lett. 29 042102 |
|
|
Abstract The on-shell properties of the nucleon effective mass in asymmetric nuclear matter are investigated in the framework of an extended Brueckner–Hartree–Fock (BHF) approach. The proton and neutron effective masses in neutron-rich nuclear matter are predicted by including both the effect of ground state correlations and the three-body force (TBF) rearrangement contribution. Within this framework, the neutron effective mass is predicted to be larger than the proton one in neutron-rich nuclear matter, i.e., mn* ≥mp*. The effect of ground state correlations turns out to be dominated at low densities and it leads to a strong enhancement of the effective mass. The TBF rearrangement contribution becomes predominant over the effect of ground state correlations at high densities and it reduces remarkably the absolute magnitude of the isospin splitting of the neutron and proton effective masses in neutron-rich matter at high densities.
|
|
Received: 05 October 2011
Published: 04 April 2012
|
|
PACS: |
21.65.Cd
|
(Asymmetric matter, neutron matter)
|
|
24.10.Cn
|
(Many-body theory)
|
|
21.30.Fe
|
(Forces in hadronic systems and effective interactions)
|
|
21.60.De
|
(Ab initio methods)
|
|
|
|
|
[1] Lunney D, Pearson J M and Thibault C 2003 Rev. Mod. Phys. 75 1021[2] Onsi M and Pearson J M 2002 Phys. Rev. C 65 047302[3] Bertsch G F, Bortignon P F and Broglia R A 1983 Rev. Mod. Phys. 55 287[4] Lombardo U, Schuck P and Zuo W 2001 Phys. Rev. C 64 021301[5] Giansiracusa G, Lombardo U and Sandulescu N 1996 Phys. Rev. C 53 R1478[6] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113[7] Das C B, Das Gupta S, Gale C and LI B A 2003 Phys. Rev. C 67 034611[8] Chen L W, Ko C M and Li B A 2005 Phys. Rev. Lett. 94 032701[9] Li B A, Yong G C and Zuo W 2005 Phys. Rev. C 71 014608Li B A, Yong G C and Zuo W 2005 Phys. Rev. C 71 044604[10] Van Dalen E N E, Fuchs C and Faessler A 2005 Phys. Rev. Lett. 95 022302Van Dalen E N E, Fuchs C and Faessler A 2005 Phys. Rev. C 72 065803[11] Ma Z Y, Rong J, Chen B Q et al 2004 Phys. Lett. B 604 170[12] Sammarruca F, Barredo W and Krastev P 2005 Phys. Rev. C 71 064306[13] Rizzo J, Colonna M and Di Toro M 2005 Phys. Rev. C 72 064609[14] Li Q F, Li Z X and Soff S 2006 J. Phys. G 32 407[15] Bombaci I and Lombardo U 1991 Phys. Rev. C 44 1892[16] Zuo W, Bombaci I and Lombardo U 1999 Phys. Rev. C 60 024605Zuo W, Giansiracusa G, Lombardo U et al 1998 Phys. Lett. B 421 1[17] Zuo W, Lombardo U, Schulze H J et al 2006 Phys. Rev. C 74 014317[18] Day B D 1978 Rev. Mod. Phys. 50 495[19] Grangé P, Lejeune A, Martzolff M et al 1989 Phys. Rev. C 40 1040[20] Zuo W, Lejeune A, Lombardo U et al 2002 Nucl. Phys. A 706 418Zuo W, Lejeune A, Lombardo U et al 2002 Eur. Phys. J. A 14 469[21] Ring P and Schuck P 1980 The Nuclear Many Body Problem (New York: Springer-Verlag)[22] Jeukenne J P, Lejeune A and Mahaux C 1976 Phys. Rep. 25 83[23] Baldo M, Bombaci I, Ferreira L S et al 1988 Phys. Lett. B 209 135[24] Bertsch G F and Kuo T T S 1968 Nucl. Phys. A 112 204Song H Q, Yang S D and Kuo T T S Nucl. Phys. A 462 491[25] Brown G E, Wiese W, Baym G and Speth G 1987 Comments Nucl. Phys. 17 39 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|