Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 041402    DOI: 10.1088/0256-307X/29/4/041402
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
The Perturbed Puma Model
RONG Shu-Jun*,LIU Qiu-Yu
Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
RONG Shu-Jun, LIU Qiu-Yu 2012 Chin. Phys. Lett. 29 041402
Download: PDF(407KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.
Received: 10 February 2012      Published: 04 April 2012
PACS:  14.60.Pq (Neutrino mass and mixing)  
  14.60.St (Non-standard-model neutrinos, right-handed neutrinos, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/041402       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/041402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RONG Shu-Jun
LIU Qiu-Yu
[1] Aguilar A et al (LSND Collaboration) 2001 Phys. Rev. D 64 112007

[2] Aguilar Arevalo A A et al (MiniBooNE Collaboration) 2009 Phys. Rev. Lett. 102 101802

[3] Aguilar Arevalo A A et al (MiniBooNE Collaboration) 2010 Phys. Rev. Lett. 105 181801

[4] Adamson P et al (MINOS Collaboration) 2011 arXiv: 1104.0344[hep-ex]

[5] Mention G et al 2011 Phys. Rev. D 83 073006

[6] Giunti C and Laveder M 2010 Phys. Rev. D 82 053005

[7] Holanda P C de and Smirnov A Yu 2010 arXiv:1012.5627 [hep-ph]

[8] Razzaque S and Smirnov A Yu 2011 arXiv:1104.1390[hep-ph]

[9] Kopp J et al 2011 Phys. Rev. Lett. 107 091801

[10] Kostelecký V A and Mewes M 2004 Phys. Rev. D 69 016005

[11] Díaz J S and Kostelecký V A 2011 Phys. Lett. B 700 25

[12] Díaz J S and Kostelecký V A 2012 Phys. Rev. D 85 016013

[13] Jora R et al 2009 Phys. Rev. D 80 093007

[14] Dev S et al 2011 Phys. Lett. B 702 28 %10.1016/j.physletb.2011.06.055

[15] Kostelecký V A and Mewes M 2011 arXiv:1112.6395[hep-ph]

[16] Abe K et al (T2K Collaboration) 2011 Phys. Rev. Lett. 107 041801

[17] Adamson P et al (MINOS Collaboration) 2011 Phys. Rev. Lett. 107 181802

[18] Abe Y et al (Double Chooz Collaboration) 2011 arXiv:1112.6353[hep-ex]

[19] Fritzsch H and Xing Z Z 1998 Phys. Lett. B 440 313

[20] Harrison P F et al 2002 Phys. Lett. B 530 167

Harrison P F and Scott W G 2002 Phys. Lett. B 535 163

[21] Xing Z Z 2002 Phys. Lett. B 533 85

[22] Jora R et al 2010 Phys. Rev. D 82 053006
Related articles from Frontiers Journals
[1] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 041402
[2] NING Guo-Zhu**, WU Yuan-Bin*** . Neutrino Mass from a Higher-Dimensional Operator[J]. Chin. Phys. Lett., 2011, 28(6): 041402
[3] LUO Xin-Lian. Neutrino Lensing[J]. Chin. Phys. Lett., 2009, 26(10): 041402
[4] LU Lei, WANG Wen-Yu, XIONG Zhao-Hua. Parameterization for Neutrino Mixing Matrix with Deviated Unitarity[J]. Chin. Phys. Lett., 2009, 26(8): 041402
[5] YANG Ping, LIU Qiu-Yu. Solar Neutrino Oscillation Parameters after SNO Phase-III and SAGE Part-III[J]. Chin. Phys. Lett., 2009, 26(8): 041402
[6] MU Cheng-Fu, SUN Gao-Feng, ZHUANG Peng-Fei. Neutrino Oscillation Induced by Chiral Phase Transition[J]. Chin. Phys. Lett., 2009, 26(3): 041402
[7] LUO Xin-Lian, BAI Hua, LI Sheng-Peng. Cosmic Neutrino Oscillation or Separation[J]. Chin. Phys. Lett., 2006, 23(10): 041402
[8] Z. Bentalha, O. Lazrec. On the Neutron Electric Dipole Moment[J]. Chin. Phys. Lett., 2004, 21(8): 041402
[9] LUO Xin-Lian, PENG Qiu-He, , ZHANG Ling-Di, BAI Hua, CHOU Chih-Kang,. Cosmic Neutrino Time Delay Relative to Photons[J]. Chin. Phys. Lett., 2004, 21(7): 041402
Viewed
Full text


Abstract