Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 041102    DOI: 10.1088/0256-307X/29/4/041102
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space
YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao
Laboratory of Photonic Information Technology, LQIT & SIPSE, South China Normal University, Guangzhou 510006
Cite this article:   
YAN Long, FENG Xun-Li, ZHANG Zhi-Ming et al  2012 Chin. Phys. Lett. 29 041102
Download: PDF(457KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using deformed boson algebra, we study the property of two-mode coherent states in noncommutative phase space. When a two-mode field evolves in the noncommutative phase space, it can acquire an extra θ-dependent phase compared to the case of commutative space. This phase is detectable and may be used to test noncommutativity.
Received: 27 December 2011      Published: 04 April 2012
PACS:  11.10.Nx (Noncommutative field theory)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/041102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/041102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Long
FENG Xun-Li
ZHANG Zhi-Ming
LIU Song-Hao
[1] Connes A, Douglas M and Schwarz A 1998 J. High Energy Phys. 02 003

Nekrasov N A 2000 arXiv:hep-th/0011095

Konechny A and Schwarz A 2002 Phys. Rep. 360 353

Harvey J A 2001 arXiv:hep-th/0102076

[2] Chaichian M, Sheikh-Jabbari M M and Tureanu A 2001 Phys. Rev. Lett. 86 2716

[3] Gamboa J, Loewe M and Rojas J C 2001 Phys. Rev. D 64 067901

Hatzinikitas A and Smyrnakis I 2002 J. Math. Phys. (N. Y.) 43 113

Smailagic A and Spallucci E 2002 Phys. Rev. D 65 107701

Ho P M and Kao H C 2002 Phys. Rev. Lett. 88 151602

[4] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267

[5] Zhang J Z 2004 Phys. Lett. B 584 204

[6] Zhang J Z 2004 Phys. Rev. Lett. 93 043002

[7] Wang J H and Li K 2007 Chin. Phys. Lett. 24 5

[8] Wang J H, Li K and Dulat S 2008 Chin. Phys. C 32 803

[9] Seiberg N and Witten E 1999 J. High Energy Phys. 1999 032

[10] Douglas M R and Nekrasov N A 2001 Rev. Mod. Phys. 73 977

Konechny A, Schwarz A 2002 Phys. Rep. 360 353

[11] Bertolarmi O, Rosa J G, de Aragão C M L, Castorina P and Zappalã D 2005 Phys. Rev. D 72 025010

[12] Zhang J Z 2004 Phys. Lett. B 597 362

[13] Yin Q J and Zhang J Z 2005 Phys. Lett. B 613 91

[14] Wu Y 2006 Phys. Lett. B 634 74

[15] Zhang J Z, Gao K L and Ning C G 2008 Phys. Rev. D 78 105021

[16] Lin B S and Jing S C 2008 Phys. Lett. A 372 4880

[17] Bastos C, Bertolami O, Dias N C and Prata J N 2011 Class. Quantum Grav. 28 125007

[18] Wang X B and Zanardi P 2002 Phys. Rev. A 65 032327

[19] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902

[20] Feng X L, Wu C F, Sun H and Oh C H 2009 Phys. Rev. Lett. 103 200501

[21] Liang M L and Chen Q 2011 Phys. Scr. 84 015008

[22] Dayi Ö F 2009 EuroPhys. Lett. 85 41002
Related articles from Frontiers Journals
[1] DIAO Xin-Feng, LONG Chao-Yun, KONG Bo, LONG Zheng-Wen. The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics[J]. Chin. Phys. Lett., 2015, 32(4): 041102
[2] HUANG Wei, WANG Zhao-Long, YAN Mu-Lin. Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge[J]. Chin. Phys. Lett., 2010, 27(6): 041102
[3] YU Xiao-Min, LI Kang. Non-Commutative Fock--Darwin System and Magnetic Field Limits[J]. Chin. Phys. Lett., 2008, 25(6): 041102
[4] WANG Ning. Remarks on Exactly Solvable Noncommutative Quantum Field[J]. Chin. Phys. Lett., 2007, 24(6): 041102
[5] LI Kang, CHAMOUN Nidal,. Van der Waals interactions and Photoelectric Effect in Noncommutative Quantum Mechanics[J]. Chin. Phys. Lett., 2007, 24(5): 041102
[6] WANG Jian-Hua, LI Kang,. He--McKellar--Wilkens Effect in Noncommutative Space[J]. Chin. Phys. Lett., 2007, 24(1): 041102
[7] LI Kang, CHAMOUN Nidal,. Hydrogen Atom Spectrum in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2006, 23(5): 041102
[8] U. Saleem, M. Siddiq, M. Hassan. On Noncommutative Sinh--Gordon Equation[J]. Chin. Phys. Lett., 2005, 22(5): 041102
[9] SHENG Zheng-Mao, FU Yong-Ming, YU Hai-Bo. Noncommutative QED Threshold Energy versus Optimum Collision Energy[J]. Chin. Phys. Lett., 2005, 22(3): 041102
[10] WU Ya-Bo, SHAO Ying, GUI Yuan-Xing. Double Noncommutative Jackiw--Teitelboim Gravity Model in 1+1 Dimensions[J]. Chin. Phys. Lett., 2004, 21(10): 041102
Viewed
Full text


Abstract