Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 040304    DOI: 10.1088/0256-307X/29/4/040304
GENERAL |
Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential
LIU Yuan,JIA Ya-Fei,LI Wei-Dong**
Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006
Cite this article:   
LIU Yuan, JIA Ya-Fei, LI Wei-Dong 2012 Chin. Phys. Lett. 29 040304
Download: PDF(553KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Fermi-decay law of Bose–Einstein condensate, which is trapped by a cigar-shaped anharmonic trap and subjected to a weak random perturbation, is investigated by numerically calculating quantum fidelity (Loschmidt echo), to reveal the coherence loss of the condensate. We find that there are three indispensable factors, anharmonic trap, weak random perturbation and nonlinear interaction, in charging of the Fermi-decay law. The anharmonic trap creates anharmonic oscillations, and the weak random perturbation causes coherence loss by disturbing their coherent oscillations, while the nonlinear interaction enhances the loss to the Fermi-decay law. Based on the Fermi-decay law, some suggestions are presented to prolong the coherent time during coherently manipulating condensates.
Received: 21 October 2011      Published: 04 April 2012
PACS:  03.75.Gg (Entanglement and decoherence in Bose-Einstein condensates)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/040304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/040304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yuan
JIA Ya-Fei
LI Wei-Dong
[1] Manfredi G and Hervieux P A 2008 Phys. Rev. Lett. 100 050405

[2] Manfredi G et al 2006 Phys. Rev. Lett. 97 190404

[3] Jalabert R A et al 2001 Phys. Rev. Lett. 86 2490

[4] Jacquod Ph et al 2001 Phys. Rev. E 64 055203

[5] Benenti G et al 2003 Phys. Rev. E 68 036212

[6] Cucchietti F M et al 2002 Phys. Rev. E 65 046209

[7] Pastawski H M et al 2000 Physica A 283 166

[8] Peres A 1984 Phys. Rev. A 30 1610

[9] Hodgman S S et al 2011 Science 331 1046

[10] Andrews M R et al 1997 Science 275 637

[11] Yasuda M and Shimizu F 1996 Phys. Rev. Lett. 77 3090

[12] Schellekens M et al 2005 Science 310 648

[13] Jeltes T et al 2007 Nature 445 402

[14] Öttl A et al 2005 Phys. Rev. Lett. 95 090404

[15] Greiner M et al 2005 Phys. Rev. Lett. 94 110401

[16] Manz S et al 2010 Phys. Rev. A 81 031610

[17] Schumm T et al 2005 Nature Phys. 1 57

[18] Scott R G et al 2009 Phys. Rev. A 79 063624

[19] Li S C et al 2008 Phys. Rev. A 78 063621

Fu L B et al 2009 Phys. Rev. A 80 013619

[20] Hall B V et al 2007 Phys. Rev. Lett. 98 030402

[21] Jo G -B et al 2007 Phys. Rev. Lett. 98 030407

[22] Hagley E W et al 1999 Phys. Rev. Lett. 83 3112

[23] Liu J et al 2005 Phys. Rev. A 72 063623

Meng S Y et al 2009 Phys. Rev. A 79 063415

[24] Bretin V et al 2004 Phys. Rev. Lett. 92 050403

[25] Lye J E et al 2005 Phys. Rev. Lett. 95 070401

[26] Clément D et al 2006 New J. Phys. 8 165

[27] Dalfovo F et al 1999 Rev. Mod. Phys. 71 463

[28] Salasnich L et al 2002 Phys. Rev. A 65 043614

[29] Li G Q et al 2006 Phys. Rev. A 74 055601

[30] Fort C et al 2005 Phys. Rev. Lett. 95 170410

[31] Li W D et al 2001 Phys. Lett. A 285 45

[32] Lewenstein M and You L 1996 Phys. Rev. Lett. 77 3489

[33] Egorov M et al 2011 Phys. Rev. A 84 021605

[34] Ferrari G et al 2006 Phys. Rev. Lett. 97 060402

[35] Jack M W 2002 Phys. Rev. Lett. 89 140402
Related articles from Frontiers Journals
[1] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 040304
[2] WEN Ming-Xuan, NIU Lin-Xiao, WANG Zhong-Kai, ZHAI Yue-Yang, CHEN Xu-Zong, ZHOU Xiao-Ji . Decoherence of Superradiant Scattering from Atoms without Confinement[J]. Chin. Phys. Lett., 2013, 30(6): 040304
[3] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 040304
[4] WANG Xiao-Rui, YANG Lu, TAN Xin-Zhou, XIONG Hong-Wei, LÜ, Bao-Long. Bose-Einstein Condensates in a One-Dimensional Optical Lattice: from Superfluidity to Number-Squeezed States[J]. Chin. Phys. Lett., 2009, 26(8): 040304
[5] WEN Ling-Hua, , LIU Min, , KONG Ling-Bo, , ZHAN Ming-Sheng,. Incomplete Erasure of Which-Way Information Encoded in Atomic Hyperfine States[J]. Chin. Phys. Lett., 2005, 22(4): 040304
[6] LI Min-Si, TIAN Li-Jun, ZHANG Hong-Biao. Explicit Analysis of Creating Maximally Entangled State in the Mott Insulator State[J]. Chin. Phys. Lett., 2004, 21(12): 040304
Viewed
Full text


Abstract