Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 040301    DOI: 10.1088/0256-307X/29/4/040301
GENERAL |
Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments
SHAN Chuan-Jia1,2**,CAO Shuai1,XUE Zheng-Yuan1,ZHU Shi-Liang1
1Laboratory of Quantum Information Technology and SPTE, South China Normal University, Guangzhou 510006
2College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002
Cite this article:   
SHAN Chuan-Jia, CAO Shuai, XUE Zheng-Yuan et al  2012 Chin. Phys. Lett. 29 040301
Download: PDF(705KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the entanglement dynamical behavior of two coupled qubits via a Heisenberg XX interaction, which are connected with two independent finite temperature heat baths. By numerical simulations of the quantum master equation, it is found that the interesting phenomena of entanglement sudden death (ESD) as well as sudden birth (ESB) appear during the evolution process for particular initial states. We also show that two critical temperatures T1 (determining that the quantum state is entangled or separable) and T2 (where maximal stationary entanglement can be observed) exist, and stationary entanglement exhibits a non-monotonic behavior as a function of the finite temperature noise strength. These results enlarge the domain of the reasonable experimental temperature where stationary entanglement can be observable.
Received: 24 September 2011      Published: 04 April 2012
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Bg (Entanglement production and manipulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/040301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHAN Chuan-Jia
CAO Shuai
XUE Zheng-Yuan
ZHU Shi-Liang
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895

Xue Z Y, Yang M, Yi Y M and Cao Z L 2006 Opt. Commun. 258 315

Chen Y et al 2006 New J. Phys. 8 97

[2] Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 70 063812

Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 69 063803

Bai Y K, Yang D and Wang Z D 2007 Phys. Rev. A 76 022336

[3] Wang C, Deng F G, Long G L 2005 Phys. Rev. A 71 044305

Mei F et al 2010 Phys. Rev. A 82 052315

[4] Wang X G 2001 Phys. Rev. A 64 012313

Wang X G 2002 Phys. Rev. A 66 044305

Wang X G 2002 Phys. Rev. A 66 034302

[5] Grover L 1998 Phys. Rev. Lett. 80 4329

[6] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404

[7] Liao J Q, Huang J F and Kuang L M 2011 Phys. Rev. A 83 052110

Huang X L, Guo J L and Yi X X 2009 Phys. Rev. A 80 054301

Quan H T, Wang Z D and Sun C P 2007 Phys. Rev. A 76 012104

[8] Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336

Shan C J et al 2008 Chin. Phys. Lett. 25 817

[9] Jing J, Lü Z G and Yang G H 2007 Phys. Rev. A 76 032322

Liao X P, Fang M F, Zheng X J and Cai J W 2007 Phys. Lett. A 367 436

[10] Yang Q, Yang M, Cao Z L et al 2008 Chin. Phys. Lett. 25 825

Jiang F J, Shi M J and Du J F 2011 Chin. Phys. Lett. 28 020308

Liu Z Q and Liang X T 2011 Chin. Phys. Lett. 28 089201

[11] Almeida M P et al 2007 Sience 316 579

Xu J et al 2010 Nat. Commun. 1 7

[12] Laurat J et al 2007 Phys. Rev. Lett. 99 180504

[13] López C E et al 2008 Phys. Rev. Lett. 101 080503

[14] Li Y, Zhou J and Guo H 2009 Phys. Rev. A 79 012309

[15] Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301

Tang Z H, Li G X and Ficek Z 2010 Phys. Rev. A 82 063837

[16] Maniscalco S et al 2008 Phys. Rev. Lett. 100 090503

Li C F et al 2011 Chin. Phys. Lett. 28 120302

[17] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502

Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103

[18] Li J G, Zou J A and Shao B 2010 Phys. Rev. A 82 042318

Zhou J, Wu C J, Zhu M Y and Guo H 2009 J. Phys. B 42 215505

[19] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University)

[20] Kim K et al 2010 Nature 465 590

Simon J et al 2011 Nature 472 307

[21] Wooters W K 1998 Phys. Rev. Lett. 80 2245
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 040301
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 040301
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 040301
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 040301
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 040301
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 040301
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 040301
[8] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 040301
[9] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 040301
[10] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 040301
[11] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 040301
[12] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 040301
[13] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 040301
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 040301
[15] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 040301
Viewed
Full text


Abstract