CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals |
FU Xiao-Jian1, XU Yuan-Da2, ZHOU Ji1** |
1State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
2School of Physics, Peking University, Beijing 100871
|
|
Cite this article: |
ZHOU Ji, XU Yuan-Da, FU Xiao-Jian 2012 Chin. Phys. Lett. 29 027805 |
|
|
Abstract A new scheme to realize an abnormal dielectric response at optical wavelength is developed on the basis of two-level electronic transition of rare-earth ion doped crystals. Based on the semi-classical theory and the Judd–Ofelt theory, the electric dipole transition under a weak field is analyzed, and a general expression for the frequency-dependent dielectric constant is obtained. As an example, the permittivity of (ErxY1−x)3Al5O12 is calculated numerically in consideration of the transition between 4I15/2and 4F9/2. An optimized dielectric property with a negative real part and low absorption is achieved. This proposes a new mechanism for building extraordinary electromagnetic media at optical frequencies by using a quantum process.
|
Keywords:
78.20.Bh
78.20.Ci
|
|
Received: 13 November 2011
Published: 11 March 2012
|
|
PACS: |
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
|
|
|
[1] Viktor G V 1968 Sov. Phys. Uspekhi 10 509
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Pendry J B et al 1996 Phys. Rev. Lett. 76 4773
[4] Smith D R et al 2000 Phys. Rev. Lett. 84 4184
[5] Linden S et al 2004 Science 306 1351
[6] Yen T J et al 2004 Science 303 1494
[7] Zhang S et al 2005 Phys. Rev. Lett. 95 137404
[8] Liu N et al 2008 Nature Mater. 7 31
[9] Valentine J et al 2008 Nature 455 376
[10] Shalaev V M 2007 Nature Photon. 1 41
[11] Cao Z S et al 2011 Chin. Phys. Lett. 28 057302
[12] Veselago V G and Narimanov E E 2006 Nature Mater. 5 759
[13] Zheludev N I 2010 Science 328 582
[14] Xiao S et al 2010 Nature 466 735
[15] Wang R et al 2010 Appl. Phys. Lett. 97 031912
[16] Sun J et al 2011 Appl. Phys. Lett. 98 101901
[17] Oktel M Ö and Müstecaplioğlu Ö E 2004 Phys. Rev. A 70 053806
[18] Shen J Q et al 2004 J. Zhejiang Univ. Sci. A 5 1322
[19] Thommen Q and Mandel P 2006 Phys. Rev. Lett. 96 053601
[20] Shen J Q et al 2007 Appl. Phys. A: Mater. 87 291
[21] Thommen Q and Mandel P 2006 Opt. Lett. 31 1803
[22] Liu C X et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 095402
[23] Scully M O and Zubairy M S 2009 Quantum Optics (Cambridge: Cambridge University Press & Beijing World Publishing Corporation)
[24] Judd B R 1962 Phys. Rev. 127 750
[25] Ofelt G S 1962 J. Chem. Phys. 37 511
[26] Chako N Q 1934 J. Chem. Phys. 2 644
[27] Peacock R D 1975 Structure and Bonding 22 chap 3 (Berlin/Heidelberg: Springer)
[28] Jackson J D 1999 Classical Electrodynamics (New York: Wiley)
[29] Krowne C M 2008 Phys. Lett. A 372 2304
[30] Xu Y T et al 2010 Chin. Phys. Lett. 27 024201
[31] Zhang S Y 2008 Spectroscopy of Rare Earth Ions: Spectral Property and Spectral Theory (Beijing: Science Press) (in Chinese)
[32] Georgescu S and Toma O 2005 IEEE J. Sel. Top. Quantum Electron. 11 682
[33] Palik E D 1998 Handbook of Optical Constants of Solids (San Digo, CA: Academic)
[34] Shen J Q 2006 Phys. Lett. A 357 54
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|