CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Deformation Induced Internal Friction Peaks in Nanocrystalline Nickel |
LI Ping-Yun1, ZHANG Xi-Yan2, NI Hai-Tao 2, CAO Zhen-Hua1, MENG Xiang-Kang1** |
1Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093
2School of Materials Science and Engineering, Chongqing University, Chongqing 400030
|
|
Cite this article: |
ZHANG Xi-Yan, NI Hai-Tao, MENG Xiang-Kang et al 2012 Chin. Phys. Lett. 29 026201 |
|
|
Abstract We report the mechanical spectroscopy study of the cold-rolling induced dynamical behavior of crystalline defects in nanocrystalline (NC) nickel. The results show that internal friction (IF) peaks in NC nickel can be induced by cold-rolling. An IF peak, originating from dislocation activity, occurs when the strain is in the range of 9.7–32.8%. Two Bordoni peaks occur when the strain is 39.0% and an IF peak associated with deformation twinning appears when the strain is 42.6%. These results mean that deformation of NC nickel is mediated by different kinds of defects as the strain increases.
|
Keywords:
62.40.+i
81.40.Lm
81.07.Bc
|
|
Received: 28 November 2011
Published: 11 March 2012
|
|
PACS: |
62.40.+i
|
(Anelasticity, internal friction, stress relaxation, and mechanical resonances)
|
|
81.40.Lm
|
(Deformation, plasticity, and creep)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
|
|
|
[1] Nowick A S and Berry B S 1972 Anelastic Relaxation in Crystalline Solids (New York: Academic)
[2] Fantozzi G, Esnouf C, Benoit W and Ritchie I G 1982 Prog. Mater. Sci. 27 311
[3] Besson J L and Boch P 1978 Acta Metall. 26 1243
[4] Sommer A W and Beshers D N 1966 J. Appl. Phys. 37 4603
[5] Lohmiller J, Eberl C, Schwaiger R, Kraft O and Balk T J 2008 Script. Mater. 59 467
[6] Seeger A 2004 Mater. Sci. Eng. A 370 50
[7] Meyers M A, Mishra A and Benson D J 2006 Prog. Mater. Sci. 51 427
[8] Wu X L, Zhu Y T, Wei Y G and Wei Q 2009 Phys. Rev. Lett. 103 205504
[9] Ni H T, Zhang X Y and Zhu Y T 2010 Chin. Phys. Lett. 27 056101
[10] Li P Y, Zhang X Y, Wu X L, Huang Y N and Meng X K 2008 Chin. Phys. Lett. 25 4339
[11] Wu X L, Liao X Z, Srinivasan S G, Zhou F, Lavernia E J, Valeiv R Z and Zhu Y T 2008 Phys. Rev. Lett. 100 095701
[12] Wu X, Zhu Y T, Chen M W and Ma E 2006 Script. Mater. 54 1685
[13] Zhang X Y, Wu X L, Liu Q, Zuo R L, Zhu A W, Jiang P and Wei Q M 2008 Appl. Phys. Lett. 93 031901
[14] Li P Y, Lu H M, Cao Z H, Tang S C, Meng X K, Li X S and Jiang Z H 2009 Appl. Phys. Lett. 94 213112
[15] Lu H M, Li P Y, Huang Y N, Meng X K, Zhang X Y and Liu Q 2009 J. Appl. Phys. 105 023516
[16] Li P Y, Cao Z H, Zhang X Y, Wu X L, Huang Y N and Meng X K 2009 Chin. Phys. Lett. 26 036102
[17] Li P Y, Cao Z H, Jiang Z H and Meng X K 2011 Chin. Phys. Lett. 28 086401
[18] Seeger A 1956 Phil. Mag. 1 651
[19] Lu L, Sui M L and Lu K 2000 Science 287 1463
[20] Wu X L and Ma E 2006 Appl. Phys. Lett. 88 231911
[21] Youssef K M, Scattergood R O, Murty K L, Horton J A and Koch C C 2005 Appl. Phys. Lett. 87 091904
[22] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M and Mao S X 2004 Science 305 654
[23] Wu X L and Zhu Y T 2008 Phys. Rev. Lett. 101 025503
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|