Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 024703    DOI: 10.1088/0256-307X/29/2/024703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Lattice Boltzmann Method for Simulating the Separation of Red Blood Cells at Microvascular Bifurcations
SHEN Zai-Yi, HE Ying**
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026
Cite this article:   
SHEN Zai-Yi, HE Ying 2012 Chin. Phys. Lett. 29 024703
Download: PDF(629KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A computational simulation for the separation of red blood cells (RBCs) is presented. The deformability of RBCs is expressed by the spring network model, which is based on the minimum energy principle. In the computation of the fluid flow, the lattice Boltzmann method is used to solve the Navier–Stokes equations. Coupling of the fluid-membrane interaction is carried out by using the immersed boundary method. To verify our method, the motions of RBCs in shear flow are simulated. Typical motions of RBCs observed in the experiments are reproduced, including tank-treading, swinging and tumbling. The motions of 8 RBCs at the bifurcation are simulated when the two daughter vessels have different ratios. The results indicate that when the ratio of the daughter vessel diameter becomes smaller, the distribution of RBCs in the two vessels becomes more non-uniform.
Keywords: 47.63.-b      47.63.Jd      87.19.U-      87.16.A-     
Received: 25 October 2011      Published: 11 March 2012
PACS:  47.63.-b (Biological fluid dynamics)  
  47.63.Jd (Microcirculation and flow through tissues)  
  87.19.U- (Hemodynamics ?)  
  87.16.A- (Theory, modeling, and simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/024703       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/024703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHEN Zai-Yi
HE Ying
[1] Jiang L G, Wu H A and Zhou X Z 2010 Chin. Phys. Lett. 27 028704
[2] Eggleton C D and Popel A S 1998 Phys. Fluids 10 1834
[3] Fischer T M, Stohr Liesen M and Schmid Schonbein H 1978 Science 202 894
[4] Kantsler V and Steinberg V 2006 Phys. Rev. Lett. 96 036001
[5] Skotheim J M and Secomb T W 2007 Phys. Rev. Lett. 98 078301
[6] Abkarian M, Faivre M and Viallat A 2007 Phys. Rev. Lett. 98 188302
[7] Zhang J F, Johnson P C and Popel A S 2007 Phys. Biol. 4 285
[8] Dupin M M, Halliday I, Care C M, Alboul L and Munn LL 2007 Phys. Rev. E 75 066707
[9] Tsubota K I, Wada S and Yamaguchi T 2006 Comput. Meth. Prog. Biol. 83 139
[10] Li J, Dao M, Lim C T and Suresh S 2005 Biophys J. 88 3707
[11] Pivkin I V and Karniadakis G E 2008 Phys. Rev. Lett. 101 118105
[12] Barber J O, Alberding J P, Restrepo J M and Secomb T W 2008 Ann. Biomed. Eng. 36 1690
[13] Less J R, Skalak T C, Sevick EM and Jain RK 1991 Cancer Res. 51 265
[14] Tsubota K I and Wada S 2010 Phys. Rev. E 81 011910
[15] Mills J P, Qie L, Dao M and Suresh S 2004 Mech. Chem. Biosys. 1 169
[16] Evans E A and Fung Y C 1972 Microvasc. Res. 4 335
[17] Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308
Related articles from Frontiers Journals
[1] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 024703
[2] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 024703
[3] N. Ali**, M. Sajid, T. Javed, Z. Abbas . An Analysis of Peristaltic Flow of a Micropolar Fluid in a Curved Channel[J]. Chin. Phys. Lett., 2011, 28(1): 024703
[4] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 024703
[5] LI Cong-Xin, CHEN Xiao-Fang, WANG Peng-Ye, WANG Wei-Chi. Effects of CRAC Channel on Spatiotemporal Ca2+ Patterns in T Cells[J]. Chin. Phys. Lett., 2010, 27(2): 024703
Viewed
Full text


Abstract