Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 023201    DOI: 10.1088/0256-307X/29/2/023201
ATOMIC AND MOLECULAR PHYSICS |
Temperature Dependence of Atomic Decay Rate
ZHANG Jian-Jun**, CHENG Ze
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
ZHANG Jian-Jun, CHENG Ze 2012 Chin. Phys. Lett. 29 023201
Download: PDF(496KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the decay rate of an atom in a two-dimensional optical microcavity in which there exists a Bose–Einstein condensation of photons. It is found that below the critical temperature Tc, the atomic decay rate depends on the absolute temperature T. Especially, at absolute zero temperature almost all photons are in the condensate state, and the atom can be approximately treated as if it is in vacuum.

Keywords: 32.70.Cs      42.50.Nn      05.30.Jp     
Received: 20 September 2011      Published: 11 March 2012
PACS:  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  05.30.Jp (Boson systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/023201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/023201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jian-Jun
CHENG Ze
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198

[2] Davis K B, Mewes M O, Andrews M R, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969

[3] Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985

[4] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag C and Grimm R 2003 Science 302 2101

[5] Deng H, Weihs G, Bloch J and Yamamoto Y 2002 Science 298 199

[6] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Science 316 1007

[7] Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B and Slavin A N 2006 Nature 443 430

[8] Ortiz G and Dukelsky J 2005 Phys. Rev. A 72 043611

[9] Wang Y Z, Zhou S Y, Long Q, Zhou S Y and Fu H X 2003 Chin. Phys. Lett. 20 799

[10] Zhang H and L F 1995 Chin. Phys. Lett. 12 593

[11] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545

[12] Barnett S M, Huttner B and Loudon R 1992 Phys. Rev. Lett. 68 3698

[13] Barnett S M, Huttner B, Loudon R, and Matloob R 1996 J. Phys. B 29 3763

[14] Nienhuis G and Alkemade C Th J 1976 Physica B 81 181

[15] Kleppner D 1981 Phys. Rev. Lett. 47 233

[16] Purcel E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 37

[17] Lewenstein M, Mossberg T W and Glauber R J 1987 Phys. Rev. Lett. 59 775

[18] Goy P, Raimond H M, Gross M and Haroche S 1983 Phys. Rev. Lett. 50 1903

[19] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2010 Appl. Phys. B 6 512

[20] Pitaevskii L and Stringari S 2003 phBose Einstein Condensation (New York: Oxford University) p 29

[21] Bogoliubov N 1947 J. Phys. (U.S.S.R) 11 23

[22] Pines D 1961 The Many Body Problem (New York: Benjamin)

[23] Pitaevskii L and Stringari S 2003 Bose Einstein Condensation (New York: Oxford University) p 36

[24] Cheng Z 2002 J. Opt. Soc. Am. B 19 1962

[25] Scully M O and Zubairy M S 1997 Quantum Optics (England: Cambridge University) p 249
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 023201
[2] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 023201
[3] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 023201
[4] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 023201
[5] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 023201
[6] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 023201
[7] SHEN Li, WANG Lei, YANG Hai-Feng, LIU Xiao-Jun, LIU Hong-Ping** . Lifetime Measurement for 6snp Rydberg States of Barium[J]. Chin. Phys. Lett., 2011, 28(4): 023201
[8] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 023201
[9] ZHAO Hong-Wei**, HU Wei-Xuan, XUE Chun-Lai, CHENG Bu-Wen, WANG Qi-Ming . Design of Waveguide Integrated Ge-Quantum-Well Electro-Absorption Modulators[J]. Chin. Phys. Lett., 2011, 28(1): 023201
[10] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 023201
[11] WANG De-Hua. Corrigendum: “Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields”[J]. Chin. Phys. Lett., 2010, 27(8): 023201
[12] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 023201
[13] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 023201
[14] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 023201
[15] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 023201
Viewed
Full text


Abstract