Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 127802    DOI: 10.1088/0256-307X/29/12/127802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
An Improvement on the Junction Temperature Measurement of Light-Emitting Diodes by using the Peak Shift Method Compared with the Forward Voltage Method
HE Su-Ming1,2, LUO Xiang-Dong2, ZHANG Bo2**, FU Lei2, CHENG Li-Wen2, WANG Jin-Bin1**, LU Wei2**
1Key Laboratory of Low-Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105
2National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
Cite this article:   
HE Su-Ming, LUO Xiang-Dong, ZHANG Bo et al  2012 Chin. Phys. Lett. 29 127802
Download: PDF(586KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The junction temperature of red, green and blue high power light emitting diodes (LEDs) is measured by using the emission peak shift method and the forward voltage method. Both the emission peak shift and the forward voltage decrease show a linear relationship relative to junction temperature. The linear coefficients of the red, green and blue LEDs for the peak shift method and the forward voltage method range from 0.03 to 0.15 nm/ °C and from 1.33 to 3.59 mV/ °C, respectively. Compared with the forward voltage method, the peak shift method is almost independent of bias current and sample difference. The variation of the slopes is less than 2% for the peak shift method and larger than 30% for the forward voltage method, when the LEDs are driven by different bias currents. It is indicated that the peak shift method gives better stability than the forward voltage method under different LED working conditions.
Received: 17 April 2012      Published: 04 March 2013
PACS:  78.66.Fd (III-V semiconductors)  
  78.60.Fi (Electroluminescence)  
  85.60.Jb (Light-emitting devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/127802       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/127802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Su-Ming
LUO Xiang-Dong
ZHANG Bo
FU Lei
CHENG Li-Wen
WANG Jin-Bin
LU Wei
[1] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T and Scherer A 2004 Nat. Mater. 3 601
[2] Wen X X, Yang X D, He M, Li Y, Wang G, Lu P Y, Qian W N, Li Y, Zhang W W, Wu W B, Chen F S and Ding L Z 2012 Chin. Phys. Lett. 29 097304
[3] Yu Z G, Chen P, Yang G F, Liu B, Xie Z L, Xiu X Q, Wu Z L, Xu F, Xu Z, Hua X M, Han P, Shi Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 098502
[4] Liu H, Zhan H, Hou J, Liu D and Gao Y H 2012 Chin. Phys. Lett. 29 108501
[5] Kao C C, Su Y K, Lin C L and Chen J J 2010 Appl. Phys. Lett. 97 023111
[6] Wierer J J, Jr, David A and Megens M M 2009 Nat. Photon. 3 163
[7] Gao H Y, Yan F W, Fan Z C, Li J M, Zeng Y P and Wang G H 2008 Chin. Phys. Lett. 25 3448
[8] Kitagawa H, Fujita M, Suto T, Asano T and Noda S 2011 Appl. Phys. Lett. 98 181104
[9] Xi Y and Schubert E F 2004 Appl. Phys. Lett. 85 2163
[10] Wang Y, Xu H, Alur S, Sharma Y, Cheng A J, Kang K, Josefsberg R, Park M, Sakhawat S, Guha A, Akpa O, Akavaram S and Das K 2010 J. Electron. Mater. 39 2448
[11] Zakgeim A L, Kuryshev G L, Mizerov M N, Polovinkin V G, Rozhansky I V and Chernyakov A E 2010 Semiconductors 44 373
[12] Xi Y, Xi J Q, Gessmann T, Shah J M, Kim J K, Schubert E F, Fischer A J, Crawford M H, Bogart K H A and Allerman A A 2005 Appl. Phys. Lett. 86 031907
[13] Chang K S, Yang S C, Kim J Y, Kook M H, Ryu S Y, Choi H Y and Kim G H 2012 Sensors 12 4648
[14] He S M, Luo X D, Zhang B, Fu L, Cheng L W, Wang J B and Lu W 2011 Rev. Sci. Instrum. 82 123101
[15] Hong E and Narendran N 2004 Proc. SPIE 5187 93
[16] Cho J, Sone C, Park Y and Yoon E 2005 Phys. Status Solidi A 202 1869
[17] Song H P, Wen J M, Zeng X W, Zhang S L, Sun J W and Zhu N H 2005 Chin. J. Lasers 32 407 (In Chinese)
[18] Chhajed S, Xi Y, Gessmann T, Xi J Q, Shah J M, Kim J K and Schubert E F 2005 Proc. SPIE 5739 16
[19] Shen H P, Zhou X L, Zhang W L and Liu M Q 2010 Proc. SPIE 7544 75446J
[20] Chen N C, Lin C M, Yang Y K, Shen C, Wang T W and Wu M C 2008 Jpn. J. Appl. Phys. 47 8779
[21] Wang T C, Kuo H C, Lee Z H, Chuo C C, Tsai M Y, Tsai C E, Lee T D, Lu T C and Chi J 2006 J. Cryst. Growth 287 582
[22] Jiang F, Liu W, Li Y, Fang W, Mo C, Zhou M and Liu H 2007 J. Lum. 122-123 693
[23] Chen W J, Kuo D C, Hung C W, Ke C C, Shen H T, Wang J C, Wu Y F and Nee T E 2007 Proc. SPIE 6468 64680T
[24] Lu W, Zhang T, He S M, Zhang B, Li N and Liu S S 2009 Opt. Quantum. Electron. 41 883
Related articles from Frontiers Journals
[1] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 127802
[2] Bing-Hui Niu, Teng-Fei Yan, Hai-Qiao Ni, Zhi-Chuan Niu, Xin-Hui Zhang. Tuning of the Electron Spin Relaxation Anisotropy via Optical Gating in GaAs/AlGaAs Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(10): 127802
[3] CHAI Xu-Zhao, ZHOU Dong, LIU Bin, XIE Zi-Li, HAN Ping, XIU Xiang-Qian, CHEN Peng, LU Hai, ZHANG Rong, ZHENG You-Dou. Effect of High-Temperature Annealing on Yellow and Blue Luminescence of Undoped GaN[J]. Chin. Phys. Lett., 2015, 32(09): 127802
[4] WANG Ting-Dong, HUAI Ping. Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems[J]. Chin. Phys. Lett., 2013, 30(6): 127802
[5] LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le, JIANG Hao. Large Active Area AlGaN Solar-Blind Schottky Avalanche Photodiodes with High Multiplication Gain[J]. Chin. Phys. Lett., 2013, 30(3): 127802
[6] DING Yu, LIU Bin, TAO Tao, LI Yi, ZHANG Zhao, ZHANG Rong, XIE Zi-Li, ZHAO Hong, GU Shu-Lin, LV Peng, ZHU Shi-Ning, ZHENG You-Dou. In-Plane Optical Anisotropy of a-Plane GaN Film on r-Plane Sapphire Grown by Metal Organic Chemical vapour Deposition[J]. Chin. Phys. Lett., 2012, 29(10): 127802
[7] WEN Xiao-Xia, YANG Xiao-Dong, HE Miao, LI Yang, WANG Geng, LU Ping-Yuan, QIAN Wei-Ning, LI Yun, ZHANG Wei-Wei, WU Wen-Bo, CHEN Fang-Sheng, DING Li-Zhen. Improved Efficiency Droop in a GaN-Based Light-Emitting Diode with an AlInN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2012, 29(9): 127802
[8] ZHENG Ji-Yuan, WANG Lai, HAO Zhi-Biao, LUO Yi, WANG Lan-Xi, CHEN Xue-Kang. A GaN p–i–p–i–n Ultraviolet Avalanche Photodiode[J]. Chin. Phys. Lett., 2012, 29(9): 127802
[9] YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Enhanced Light Output of InGaN-Based Light Emitting Diodes with Roughed p-Type GaN Surface by Using Ni Nanoporous Template[J]. Chin. Phys. Lett., 2012, 29(9): 127802
[10] TENG Long, ZHANG Rong, XIE Zi-Li, TAO Tao, ZHANG Zhao, LI Ye-Cao, LIU Bin, CHEN Peng, HAN Ping, ZHENG You-Dou. Raman Scattering Study of InxGa1−xN Alloys with Low Indium Compositions[J]. Chin. Phys. Lett., 2012, 29(2): 127802
[11] WANG Fei, **, ZHANG Xin-Liang, YU Yu, XU En-Ming . Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter[J]. Chin. Phys. Lett., 2011, 28(6): 127802
[12] GAO Bo**, LIU Hong-Xia, WANG Shu-Long . AlGaN/GaN Ultraviolet Detector with Dual Band Response[J]. Chin. Phys. Lett., 2011, 28(5): 127802
[13] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 127802
[14] WANG Hai-Li, XIONG Yong-Hua, HUANG She-Song, NI Hai-Qiao, HE Zhen-Hong, DOU Xiu-Ming, NIU Zhi-Chuan. Photoluminescence of Charged Low-Density InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2009, 26(10): 127802
[15] LU Hui-Min, CHEN Gen-Xiang, JIAN Shui-Sheng. Design of Phosphor-Free Single-Chip White Light-Emitting Diodes Using InAlGaN Irregular Multiple Quantum Well Structures[J]. Chin. Phys. Lett., 2009, 26(8): 127802
Viewed
Full text


Abstract