Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 127701    DOI: 10.1088/0256-307X/29/12/127701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ultrasonic Energy Transference Based on an MEMS ZnO Film Array
WU Shao-Hua1,2, ZHAO Zhan1**, ZHAO Jun-Juan1,2, GUO Li-Jun1,2, DU Li-Dong1, FANG Zhen1, KONG De-Yi3, XIAO Li1,2, GAO Zhong-Hua1,2
1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190
2Graduate University of Chinese Academy of Sciences, Beijing 100049
3State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
WU Shao-Hua, ZHAO Zhan, ZHAO Jun-Juan et al  2012 Chin. Phys. Lett. 29 127701
Download: PDF(498KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An ultrasonic energy transference system with a ZnO square piezoelectric thin-film array (SPTFA) structure is presented. The design principle of the system is analyzed, and a device with the SPTFA structure is successfully fabricated based on MEMS processes. The characteristics of the energy transference system are investigated in detail. The experimental results reveal that the resonant frequency of the system is 13 MHz, the maximum voltage of the receiving end reaches 10.87 V when the amplitude of excitation voltage is 10 V, at that time the output power of system is 5.377 mW, and power density is 2.581 mW/cm2. The light emitting diode is lit successfully by the system in a distance of 3 mm.
Received: 21 March 2012      Published: 04 March 2013
PACS:  77.65.-j (Piezoelectricity and electromechanical effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/127701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/127701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Shao-Hua
ZHAO Zhan
ZHAO Jun-Juan
GUO Li-Jun
DU Li-Dong
FANG Zhen
KONG De-Yi
XIAO Li
GAO Zhong-Hua
[1] Xu S et al 2010 Nat. Nanotechnol. 5 366
[2] Ozeri S and Shmilovitz D 2010 Ultrasonics 50 556
[3] Ozeri S et al 2010 Ultrasonics 50 666
[4] Wada T et al 2010 Appl. Phys. Express 3 102503
[5] Tomioka S et al 2011 Jpn. J. Appl. Phys. 50 09ND16
[6] Kiso M et al 2011 Jpn. J. Appl. Phys. 50 06GM03
[7] Yamada T and Kokubun Y 2009 Appl. Phys. Express 2 062402
[8] Greve D W and Oppenheim I J 2003 Sensors 2 814
[9] Chandrana C et al 2010 Sensors 10 8740
[10] Oralkan O et al 2002 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 49 1596
[11] Park K K et al 2011 Sens. Actuat. B 160 1120
[12] Pan M C et al 2011 Jpn. J. Appl. Phys. 50 07HD02
[13] Gao W M et al 2002 Chin. Phys. 11 132
[14] Zhang W et al 2009 Chin. Phys. Lett. 26 064301
[15] Mahmoud F A et al 2011 Sens. Lett. 9 1712
[16] Mahdhi H et al 2011 Sens. Lett. 9 2150
[17] Douayar A et al 2011 Sens. Lett. 9 2133
[18] Richardson J J et al 2011 Appl. Phys. Express 4 126502
Related articles from Frontiers Journals
[1] Chen-Fei Jin, Si-Qi Zhang, Zhi-Qiang Shen, Wei-Li Li. Roles of Nano-Domain Switching and Non-180$^{\circ}$ Domains in Enhancing Local Piezoelectric Responses of Highly (100)-Oriented Pb(Zr$_{0.60}$Ti$_{0.40}$)O$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2019, 36(10): 127701
[2] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 127701
[3] Zheng-Hua Tang, Zheng-Sheng Jiang, Chun-Zhi Jiang, Da-Jun Lei, Jian-Quan Huang, Feng Qiu, Hai-Ming Deng, Min Yao, Xiao-Yi Huang. Field Tunable Polaritonic Band Gaps in Fibonacci Piezoelectric Superlattices[J]. Chin. Phys. Lett., 2018, 35(7): 127701
[4] Ze-Qun Fang, Zhi-Lin Hou. Tunable Band Gap in Piezoelectric Composite Rod Based on the Inter-Coupling Effect[J]. Chin. Phys. Lett., 2018, 35(5): 127701
[5] Hao He, Jiang-Tao Zhao, Zhen-Lin Luo, Yuan-Jun Yang, Han Xu, Bin Hong, Liang-Xin Wang, Rui-Xue Wang, Chen Gao. The Electric-Field Controllable Non-Volatile 35$^{\circ}$ Rotation of Magnetic Easy Axis in Magnetoelectric CoFeB/(001)-Cut Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-25%PbTiO$_{3}$ Heterostructure[J]. Chin. Phys. Lett., 2016, 33(06): 127701
[6] Zhen-Ye Zhu, Si-Qi Wang, Yan-Ming Fu. First-Principles Study of Properties of Strained PbTiO$_{3}$/KTaO$_{3}$ Superlattice[J]. Chin. Phys. Lett., 2016, 33(02): 127701
[7] LIU Yang, HUANG Xu-Dong, FENG Yu-Jun, HE Hong-Liang. Controlling Factors of the Electric Field at the Triple Junction[J]. Chin. Phys. Lett., 2014, 31(2): 127701
[8] WANG Yin, ZHOU Jin-Xiong, WU Xiao-Hong, LI Bo, ZHANG Ling. Energy Diagrams of Dielectric Elastomer Generators under Different Types of Deformation[J]. Chin. Phys. Lett., 2013, 30(6): 127701
[9] XU Yan-Long, CHEN Chang-Qing, TIAN Xiao-Geng. The Existence of Simultaneous Bragg and Locally Resonant Band Gaps in Composite Phononic Crystal[J]. Chin. Phys. Lett., 2013, 30(4): 127701
[10] WANG Xian-Ying, XIE Shu-Fan, CHEN Xiao-Dong, LIU Yang-Yang. Direct Piezoelectric Potential Measurement of ZnO Nanowires Using a Kelvin Probe Force Microscope[J]. Chin. Phys. Lett., 2013, 30(4): 127701
[11] TANG Zheng-Hua, ZHANG Wei-Yi. A Field Tunable Multichannel Microwave Delay-Line Using a Piezoelectric-Piezomagnetic Superlattice[J]. Chin. Phys. Lett., 2012, 29(11): 127701
[12] LI Xiu-Ming, ZHANG Rui, HUANG Nai-Xing, LÜ, Tian-Quan, CAO Wen-Wu. Surface Acoustic Wave Propagation in Relaxor-Based Ferroelectric Single Crystals 0.93Pb(Zn1/3Nb2/3)O3−0.07PbTiO3 Poled along [011]c[J]. Chin. Phys. Lett., 2012, 29(2): 127701
[13] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 127701
[14] DUAN Yi-Feng**, QIN Li-Xia, SHI Li-Wei, TANG Gang . Pressure-Induced Anomalous Phase Transitions and Colossal Enhancements of Piezoelectricity in Ground-State BaTiO3[J]. Chin. Phys. Lett., 2011, 28(4): 127701
[15] NI Heng-Kan, ZOU Qiang**, FU Xing, WU Sen, WANG Hui, XUE Tao . Production of ZnO Nanobelts and Meso-Scale Study of Mechanical Properties[J]. Chin. Phys. Lett., 2010, 27(11): 127701
Viewed
Full text


Abstract