Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 127304    DOI: 10.1088/0256-307X/29/12/127304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ultracompact Refractive Index Sensor Based on Surface-Plasmon-Polariton Interference
WANG Chen1,2, CHEN Jian-Jun1,2**, TANG Wei-Hua1, XIAO Jing-Hua1,2
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
WANG Chen, CHEN Jian-Jun, TANG Wei-Hua et al  2012 Chin. Phys. Lett. 29 127304
Download: PDF(855KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using an ultracompact groove-slit-groove (GSG) structure, a refractive index sensor with a broadband response is proposed and experimentally demonstrated. Due to the interference of surface plasmon polaritons (SPPs), the transmission spectra in the GSG structure exhibit oscillation behaviors in a broad bandwidth, and they are quite sensitive to the refractive index of the surroundings. Based on the principle, the characteristics of its refractive index sensing are demonstrated experimentally. In the experiment, the structure is illuminated with a bulk light source (not a tightly focused light source) from the back side. This decreases the difficulty of the experimental measurement and can protect strong light sources from damaging the detection samples. Meanwhile, the whole structure of the sensor can be made more ultracompact without considering the influence of the incident waves.
Received: 08 August 2012      Published: 04 March 2013
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  42.25.Hz (Interference)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/127304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/127304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Chen
CHEN Jian-Jun
TANG Wei-Hua
XIAO Jing-Hua
[1] Raether H 1988 Surface Plasmons Smooth Rough Surfaces Gratings 1st edn (Berlin: Springer)
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Chen J J, Li Z, Yue S and Gong Q H 2010 Appl. Phys. Lett. 97 041113
[4] Pacifici D, Lezec H J and Atwater H A 2007 Nat. Photon. 1 402
[5] Yue S, Li Z, Chen J J and Gong Q H 2010 Chin. Phys. Lett. 27 027303
[6] Chen J J, Li Z and Gong Q H 2009 Chin. Phys. B 18 3535
[7] Wang X D, Ye Y H, Ma J and Jiang M P 2010 Chin. Phys. Lett. 27 094101
[8] Chen J J, Li Z, Zhang J S and Gong Q H 2008 Acta Phys. Sin. 57 5893 (in Chinese)
[9] Gu Y, Yang P F and Gong Q H 2008 Chin. Phys. B 17 3880
[10] Chen J J, Li Z, Yue S, Xiao J H and Gong Q H 2012 Nano Lett. 12 2494
[11] Matthew J D, Luke A S, Domenico P, Henri J L, Kaushik B and Harry A A 2008 Nano Lett. 8 4048
[12] Otto A Z 1968 Physik 216 398
[13] Krestschmann E and Raether H Z 1968 Naturforsch 23 2135
[14] Kurihara K and Anal K S 2002 Chemistry 74 696
[15] Antoine L, Hyungsoon I, Nathan C L and Sang-Hyun O 2007 Appl. Phys. Lett. 90 243110
[16] Alexandre G B, Reuven G, Brian L and Karen L K 2004 Langmuir 20 4813
[17] Li Y S, Yanina S and Jacques A 2010 Opt. Express 18 11464
[18] Chi L W, George C K C, Beng K N, Shuchi A, Lin Z P, Peng C and Ho P H 2011 Opt. Express 19 18965
[19] Marek P, Hana ? Pavel K, Nicolle G, Joachim R K and Ji?í H 2012 Opt. Express 20 672
[20] Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A and Nuzzo R G 2008 Chem. Rev. 108 494
[21] Chen H J, Kou X S, Yang Z, Ni W H and Wang J F 2008 Langmuir 24 5233
[22] Yonzon C R, Jeoungf E, Zou L S, Schatz G C, Mrksich M and Van D 2004 J. Am. Chem. Soc. 126 12669
[23] Svedendahl M, Chen S, Dmitriev A and Kall M 2009 Nano Lett. 9 4428
[24] Wu X F, Zhang J S, Chen J J, Zhao C L and Gong Q H 2009 Opt. Lett. 34 392
[25] Gao Y K, Gan Q Q, Xin Z M, Cheng X H and Bartoli F J 2011 ACS Nano 5 9836
[26] Feng J, Siu V S, Roelke A, Mehta V, Rhieu S Y, Palmore G T R and Pacifici D 2012 Nano Lett. 12 602
[27] Yavas O and Kocabas C 2012 Opt. Lett. 37 3396
[28] Gordon R 2006 Phys. Rev. B 73 153405
[29] Chen J J, Li Z, Lei M, Yue S, Xiao J H and Gong Q H 2011 Opt. Express 19 26463
[30] Chen J J, Li Z, Yue S and Gong Q H 2011 J. Appl. Phys. 109 073102
[31] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 127304
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 127304
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 127304
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 127304
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 127304
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 127304
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 127304
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 127304
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 127304
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 127304
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 127304
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 127304
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 127304
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 127304
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 127304
Viewed
Full text


Abstract