Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 127303    DOI: 10.1088/0256-307X/29/12/127303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
GaSb p-Channel Metal-Oxide-Semiconductor Field-Effect Transistors with Ni/Pt/Au Source/Drain Ohmic Contacts
WU Li-Shu1,2, SUN Bing2, CHANG Hu-Dong2, ZHAO Wei2, XUE Bai-Qing2, ZHANG Xiong1, LIU Hong-Gang2**
1Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096
2Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
WU Li-Shu, SUN Bing, CHANG Hu-Dong et al  2012 Chin. Phys. Lett. 29 127303
Download: PDF(740KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaSb is an attractive candidate for future high-performance III–V p-channel metal-oxide-semiconductor-field-effect-transistors (pMOSFETs) because of its high hole mobility. The effect of HCl based-chemical cleaning on removing the non-self limiting and instable native oxide layer of GaSb to obtain a clean and smooth surface has been studied. It is observed that the rms roughness of a GaSb surface is significantly reduced from 2.731 nm to 0.693 nm by using HCl:H2O (1:3) solution. The Ni/Pt/Au ohmic contact exhibits an optimal specific contact resistivity of about 6.89×10?7 Ω?cm2 with a 60 s rapid thermal anneal (RTA) at 250°C. Based on the chemical cleaning and ohmic contact experimental results, inversion-channel enhancement GaSb pMOSFETs are demonstrated. For a 6 μm gate length GaSb pMOSFET, a maximum drain current of about 4.0 mA/mm, a drain current on-off (ION/IOFF) ratio of >103, and a subthreshold swing of ~250 mV/decade are achieved. Combined with the split CV method, a peak hole mobility of about 160 cm2/V?s is obtained for a 24 μm gate length GaSb pMOSFET.
Received: 24 July 2012      Published: 04 March 2013
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
  68.35.Ct (Interface structure and roughness)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/127303       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/127303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Li-Shu
SUN Bing
CHANG Hu-Dong
ZHAO Wei
XUE Bai-Qing
ZHANG Xiong
LIU Hong-Gang
[1] Bennett B R, Magno R, Boos J B, Kruppa W and Ancona M G 2005 Solid-State Electron. 49 1875
[2] McDonnell S, Zhernokletov D, Kirk A, Kim J and Wallace R 2011 Appl. Surf. Sci. 257 8747
[3] Nainani A, Sun Y, Irisawa T, Yuan Z, Kobayashi M, Pianetta P, Bennett B R, Boos J B and Saraswat K C 2011 J. Appl. Phys. 109 114908
[4] Liu Z, Hawkins B and Kuech T 2003 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 21 71
[5] Robinson J and Mohney S 2004 J. Appl. Phys. 96 2684
[6] Robinson J and Mohney S 2005 J. Appl. Phys. 98 033703
[7] Vogt A, Simon A, Weber J, Hartnagel H, Schikora J, Buschmann V and Fuess H 1999 Mater. Sci. Eng. B 66 199
[8] Heinz C 1983 Int. J. Electron. 54 247
[9] Ikossi K, Goldenberg M and Mittereder J 2002 Solid-State Electron. 46 1627
[10] Nainani A, Irisawa T, Yuan Z, Bennett B R, Boos J B, Nishi Y and Saraswat K C 2011 IEEE Trans. Electron Devices 58 3407
[11] Xu M, Wang R and Ye P D 2011 IEEE Electron Device Lett. 99 1
[12] Yuan Z, Nainani A, Bennett B R, Boos J B, Ancona M G and Saraswat K C 2012 Appl. Phys. Lett. 100 143503
[13] Nainani A, Yuan Z, Krishnamohan T, Bennett B R, Boos J B, Reason M, Ancona M G, Nishi Y and Saraswat K C 2011 J. Appl. Phys. 110
[14] Wong H S, White M H, Krutsick T J and Booth R V 1987 Solid-State Electron. 30 953
[15] Takagi S, Toriumi A, Iwase M and Tango H 1994 IEEE Trans. Electron Devices 41 2357
[16] Koomen J 1973 Solid-State Electron. 16 801
[17] Kim J K, Lee J L, Lee J W, Eoi Shin H, Jo Park Y and Kim T 1998 Appl. Phys. Lett. 73 2953
[18] Lan Y L, Lin H C, Liu H H, Lee G Y, Ren F, Pearton S J, Chang M N and Chyi J I 2009 Appl. Phys. Lett. 94 243502
[19] Huang Y L, Chang P, Yang Z K, Lee Y J, Lee H Y, Liu H J, Kwo J, Mannaerts J P and Hong M 2005 Appl. Phys. Lett. 86 191905
[20] Carver G, Kopanski J, Novotny D and Forman R 1988 IEEE Trans. Electron Devices 35 489
[21] Feng Q, Xing T, Wang Q et al 2012 Chin. Phys. B 21 17304
Related articles from Frontiers Journals
[1] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 127303
[2] Wen-Lun Zhang. Improvement of Performance of HfS$_{2}$ Transistors Using a Self-Assembled Monolayer as Gate Dielectric[J]. Chin. Phys. Lett., 2019, 36(6): 127303
[3] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 127303
[4] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 127303
[5] Zhao-Zhao Hou, Gui-Lei Wang, Jia-Xin Yao, Qing-Zhu Zhang, Hua-Xiang Yin. Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel[J]. Chin. Phys. Lett., 2018, 35(5): 127303
[6] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 127303
[7] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 127303
[8] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 127303
[9] Zhao-Zhao Hou, Gui-Lei Wang, Jin-Juan Xiang, Jia-Xin Yao, Zhen-Hua Wu, Qing-Zhu Zhang, Hua-Xiang Yin. Improved Operation Characteristics for Nonvolatile Charge-Trapping Memory Capacitors with High-$\kappa$ Dielectrics and SiGe Epitaxial Substrates[J]. Chin. Phys. Lett., 2017, 34(9): 127303
[10] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 127303
[11] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 127303
[12] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 127303
[13] Yi-Tao He, Ming Qiao, Lu Li, Gang Dai, Bo Zhang, Zhao-Ji Li. A Lateral Regulator Diode with Field Plates for Light-Emitting-Diode Lighting[J]. Chin. Phys. Lett., 2016, 33(09): 127303
[14] Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, De-Zhao Yu, Xue-Feng Yu, Qi Guo. Hot-Carrier Effects on Total Dose Irradiated 65nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2016, 33(07): 127303
[15] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 127303
Viewed
Full text


Abstract