CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
GaSb p-Channel Metal-Oxide-Semiconductor Field-Effect Transistors with Ni/Pt/Au Source/Drain Ohmic Contacts |
WU Li-Shu1,2, SUN Bing2, CHANG Hu-Dong2, ZHAO Wei2, XUE Bai-Qing2, ZHANG Xiong1, LIU Hong-Gang2** |
1Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 2Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
|
|
Cite this article: |
WU Li-Shu, SUN Bing, CHANG Hu-Dong et al 2012 Chin. Phys. Lett. 29 127303 |
|
|
Abstract GaSb is an attractive candidate for future high-performance III–V p-channel metal-oxide-semiconductor-field-effect-transistors (pMOSFETs) because of its high hole mobility. The effect of HCl based-chemical cleaning on removing the non-self limiting and instable native oxide layer of GaSb to obtain a clean and smooth surface has been studied. It is observed that the rms roughness of a GaSb surface is significantly reduced from 2.731 nm to 0.693 nm by using HCl:H2O (1:3) solution. The Ni/Pt/Au ohmic contact exhibits an optimal specific contact resistivity of about 6.89×10?7 Ω?cm2 with a 60 s rapid thermal anneal (RTA) at 250°C. Based on the chemical cleaning and ohmic contact experimental results, inversion-channel enhancement GaSb pMOSFETs are demonstrated. For a 6 μm gate length GaSb pMOSFET, a maximum drain current of about 4.0 mA/mm, a drain current on-off (ION/IOFF) ratio of >103, and a subthreshold swing of ~250 mV/decade are achieved. Combined with the split C–V method, a peak hole mobility of about 160 cm2/V?s is obtained for a 24 μm gate length GaSb pMOSFET.
|
|
Received: 24 July 2012
Published: 04 March 2013
|
|
PACS: |
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.30.Tv
|
(Field effect devices)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
|
|
|
[1] Bennett B R, Magno R, Boos J B, Kruppa W and Ancona M G 2005 Solid-State Electron. 49 1875 [2] McDonnell S, Zhernokletov D, Kirk A, Kim J and Wallace R 2011 Appl. Surf. Sci. 257 8747 [3] Nainani A, Sun Y, Irisawa T, Yuan Z, Kobayashi M, Pianetta P, Bennett B R, Boos J B and Saraswat K C 2011 J. Appl. Phys. 109 114908 [4] Liu Z, Hawkins B and Kuech T 2003 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 21 71 [5] Robinson J and Mohney S 2004 J. Appl. Phys. 96 2684 [6] Robinson J and Mohney S 2005 J. Appl. Phys. 98 033703 [7] Vogt A, Simon A, Weber J, Hartnagel H, Schikora J, Buschmann V and Fuess H 1999 Mater. Sci. Eng. B 66 199 [8] Heinz C 1983 Int. J. Electron. 54 247 [9] Ikossi K, Goldenberg M and Mittereder J 2002 Solid-State Electron. 46 1627 [10] Nainani A, Irisawa T, Yuan Z, Bennett B R, Boos J B, Nishi Y and Saraswat K C 2011 IEEE Trans. Electron Devices 58 3407 [11] Xu M, Wang R and Ye P D 2011 IEEE Electron Device Lett. 99 1 [12] Yuan Z, Nainani A, Bennett B R, Boos J B, Ancona M G and Saraswat K C 2012 Appl. Phys. Lett. 100 143503 [13] Nainani A, Yuan Z, Krishnamohan T, Bennett B R, Boos J B, Reason M, Ancona M G, Nishi Y and Saraswat K C 2011 J. Appl. Phys. 110 [14] Wong H S, White M H, Krutsick T J and Booth R V 1987 Solid-State Electron. 30 953 [15] Takagi S, Toriumi A, Iwase M and Tango H 1994 IEEE Trans. Electron Devices 41 2357 [16] Koomen J 1973 Solid-State Electron. 16 801 [17] Kim J K, Lee J L, Lee J W, Eoi Shin H, Jo Park Y and Kim T 1998 Appl. Phys. Lett. 73 2953 [18] Lan Y L, Lin H C, Liu H H, Lee G Y, Ren F, Pearton S J, Chang M N and Chyi J I 2009 Appl. Phys. Lett. 94 243502 [19] Huang Y L, Chang P, Yang Z K, Lee Y J, Lee H Y, Liu H J, Kwo J, Mannaerts J P and Hong M 2005 Appl. Phys. Lett. 86 191905 [20] Carver G, Kopanski J, Novotny D and Forman R 1988 IEEE Trans. Electron Devices 35 489 [21] Feng Q, Xing T, Wang Q et al 2012 Chin. Phys. B 21 17304 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|