Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 127201    DOI: 10.1088/0256-307X/29/12/127201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Onset for the Electron Velocity Overshoot in Indium Nitride
Clóves G. Rodrigues**
Departamento de Matemática e Física, Pontifícia Universidade Católica de Goiás CP 86, 74605-010 Goiania, Goiás, Brazil
Cite this article:   
Clóves G. Rodrigues 2012 Chin. Phys. Lett. 29 127201
Download: PDF(751KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A theoretical study on the electron drift velocity and electron nonequilibrium temperature of indium nitride (InN) is presented. It is based on a nonlinear quantum kinetic theory which provides a description of the dissipative phenomena developing in the system. The ultrafast time evolution of the electron drift velocity and electron nonequilibrium temperature is obtained, and overshoot effects are evidenced on both of them. The overshoot onsets are shown to occur at 4 kV/cm, electric field intensity which is considerably smaller than those recently derived by resorting to Monte Carlo simulations.
Received: 13 January 2012      Published: 04 March 2013
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  78.55.Cr (III-V semiconductors)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/127201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/127201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Clóves G. Rodrigues
[1] Piprek J 2007 Nitride Semiconductor Devices: Principles and Simulation (New York: Wiley)
[2] Takahashi K, Yoshikawa A and Sandhu A 2006 Wide Bandgap Semiconductors (Berlin: Springer)
[3] Morko? H 2008 Handbook of Nitride Semiconductors and Devices (New York: Wiley)
[4] Rodrigues C G et al R 2010 Braz. J. Phys. 40 63
[5] Wu J et al 2003 J. Appl. Phys. 94 4457
[6] Ishitani Y et al 2005 Phys. Status Solidi C 2 2276
[7] Davydov V Y et al 2002 Phys. Status Solidi B 230 R4
[8] Matsuoka T et al 2002 Appl. Phys. Lett. 81 1246
[9] Wu J et al 2002 Appl. Phys. Lett. 80 3967
[10] Chen Q et al 1998 IEEE Electron Device Lett. 19 44
[11] Bellotti E et al 1999 J. Appl. Phys. 85 916
[12] O'Leary S K et al 2003 J. Electron. Mater. 32 327
[13] O'Leary S K et al 2006 J. Mater Sci: Mater. Electron. 17 87
[14] O'LearyS K et al 2006 Appl. Phys. Lett. 88 152113
[15] O'Leary S K et al 2005 Appl. Phys. Lett. 87 222103
[16] Tansley T L and Foley C P 1986 J. Appl. Phys. 59 3241
[17] Yeo Y C et al 1998 J. Appl. Phys. 83 1429
[18] Rodrigues C G 2007 J. Mater. Sci. 42 396
Rodrigues C G 2006 Chin. J. Phys. 44 44
[19] Rodrigues C G et al 2000 Transport Theor. Stat. Phys. 29 733
[20] Zubarev D N, Morosov V and R?pke G 1997 Statistical Mechanics of Nonequilibrium Processes vols 1 and 2 (Berlin: Akademie)
[21] Peletminskii S V and Yatsenko A A 1968 J. Exp. Theor. Phys. 26 773
[22] Zubarev D N 1974 Nonequilibrium Statistical Thermodynamics (New York: Plenum-Consultants Bureau)
[23] Zubarev D N 1970 Fortschr. Phys./Prog. Phys. 18 125
[24] Zubarev D N 1981 J. Soviet Math. 16 1509
[25] Akhiezer A I and Peletminskii S V 1981 Methods of Statistical Physics (Oxford: Pergamon)
[26] Luzzi R et al 2002 Predictive Statistical Mechanics: A Nonequilibrium Statistical Ensemble Formalism (Dordrecht: Kluwer Academic)
[27] Luzzi R et al 1990 Fortschr. Phys./Prog. Phys. 38 887
[28] Luzzi R et al 2000 Statistical Foundations of Irreversible Thermodynamics (Stuttgart: Teubner-BertelsmannSpringer)
[29] Rodrigues C G et al 2001 J. Appl. Phys. 90 1879
Rodrigues C G et al 2004 J. Appl. Phys. 95 4914
[30] Rodrigues C G et al 2005 J. Phys. D: Appl. Phys. 38 3584
Rodrigues C G et al 2006 Solid State Commun. 140 135
[31] Rodrigues C G 2006 Microelectron. J. 37 657
[32] Algarte A C et al 1992 Phys. Status Solidi B 173 487
[33] Rodrigues C G et al 1999 Phys. Status Solidi B 216 35
[34] Casas-Vasquez J and Jou D 2003 Rep. Prog. Phys. 66 1937
[35] Fr?hlich H, Pelzer H and Zienau S 1950 Phil. Mag. 41 221
[36] Ehrenreich H 1957 J. Phys. Chem. Solids 2 131
[37] Haga E and Kimura H 1963 J. Phys. Soc. Jpn. 18 777
[38] Ehrenreich H 1960 Phys. Rev. 120 1951
[39] Callen H 1949 Phys. Rev. 76 1394
[40] Conwell E M 1967 High-field Transport in Semiconductors in Solid State Physics Series Suppl. 9 (New York: Academic)
[41] Hutson A R 1961 J. Appl. Phys. 32 2287(supplement)
[42] Vogl P 1981 Physics of Nonlinear Transport in Semiconductors (New York: Plenum)
[43] Ridley B K 1977 J. Phys. C: Solid State Phys. 10 1589
[44] Harrison W A 1956 Phys. Rev. 104 1281
[45] Tsen K T et al 2005 Appl. Phys. Lett. 86 222103
[46] Zanato D et al J 2004 Semicond. Sci. Technol. 19 1024
[47] Masyukov N A et al 2011 J. Appl. Phys. 109 23706
[48] Rodrigues C G et al 2007 J. Phys.: Condens. Matter 19 346214
Related articles from Frontiers Journals
[1] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 127201
[2] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 127201
[3] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 127201
[4] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 127201
[5] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 127201
[6] Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(05): 127201
[7] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 127201
[8] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 127201
[9] TAN Xun-Qiong. Electronic Transport of the Adsorbed Trigonal Graphene Flake: A First Principles Calculation[J]. Chin. Phys. Lett., 2014, 31(12): 127201
[10] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 127201
[11] LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 127201
[12] WANG Ting-Dong, HUAI Ping. Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems[J]. Chin. Phys. Lett., 2013, 30(6): 127201
[13] ZHANG Yi-Jun, ZHAO Jing, ZOU Ji-Jun, NIU Jun, CHEN Xin-Long, CHANG Ben-Kang. The High Quantum Efficiency of Exponential-Doping AlGaAs/GaAs Photocathodes Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(4): 127201
[14] LI Chuan-Feng, CHEN Geng, GONG Ming, LI Hai-Qiao, NIU Zhi-Chuan. Experimental Research on Carrier Redistribution in InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2012, 29(9): 127201
[15] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 127201
Viewed
Full text


Abstract