CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Influence of Pressure on the Structural, Electronic and Mechanical Properties of Cubic SrHfO3: A First-Principles Study |
FENG Li-Ping**, WANG Zhi-Qiang, LIU Qi-Jun, TAN Ting-Ting, LIU Zheng-Tang |
State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
FENG Li-Ping, WANG Zhi-Qiang, LIU Qi-Jun et al 2012 Chin. Phys. Lett. 29 127103 |
|
|
Abstract The structural, electronic and mechanical properties of cubic SrHfO3 under hydrostatic pressure up to 70 GPa are investigated using the first-principles density functional theory (DFT). The calculated lattice parameter, elastic constants and mechanical properties of cubic SrHfO3 at zero pressure are in good agreement with the available experimental data and other calculational values. As pressure increases, cubic SrHfO3 will change from an indirect band gap (Γ –R) compound to a direct band gap (Γ–Γ) compound. Charge densities reveal the coexistence of covalent bonding and ionic bonding in cubic SrHfO3. With the increase of pressure, both the covalent bonding (HfO) and ionic bonding (SrO) are strengthened. Cubic SrHfO3 is mechanically stable when pressure is lower than 55.1 GPa, whereas that is instable when pressure is higher than 55.1 GPa. With the increasing pressure, enthalpy, bulk modulus, shear modulus and Young's modulus increase, whereas the lattice parameter decreases. Moreover, cubic SrHfO3 under pressure has higher hardness and better ductility than that at zero pressure.
|
|
Received: 08 June 2012
Published: 04 March 2013
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] Wang H M, Simmonds M C and Rodenburg J M 2003 Mater. Chem. Phys. 77 802 [2] Feteira A, Sinclair D C, Rajab K Z and Lanagan M T 2008 J. Am. Ceram. Soc. 91 893 [3] Sousa M, Rossel C, Marchiori C, Carmi D, Locquet J P, Webb D J et al 2007 J. Appl. Phys. 102 104103 [4] Nikl M, Bohacek P, Trunda B, Jary V, Fabeni P, Studnicka V, Kucerkova R and Beitlerova A 2011 Opt. Mater. 34 433 [5] Yamanaka S, Maekawa T, Muta H, Matsuda T, Kobayashi S I and Kurosaki K 2004 J. Solid State Chem. 177 3484 [6] Ji Y M, Jiang D Y Qin L S, Chen J J, Feng T, Liao Y K and et al 2005 J. Cryst. Growth 280 93 [7] Lauria A, Chiodini N, Mihokova E, Moretti F, Nale A, Nikl M and Vedda A 2010 Opt. Mater. 32 1356 [8] Villanueva-Ibanez M, Luyer L C, Parola S, Marty O and Mugnier J 2004 J. Sol-Gel Sci. Technol. 31 277 [9] Lupina G, Koz?owski G, Dabrowski J, Dudek P, Lippert G and Müssig H J 2008 Appl. Phys. Lett. 93 252907 [10] Sawkar-Mathur M, Marchiori C, Fompeyrine J and Toney M F 2010 Thin Solid Films 518 S118 [11] Vali R 2009 Solid State Commun. 149 519 [12] Liu Q J, Liu Z T, Feng L P, Tian H, Liu L and Liu W T 2010 Comput. Mater. Sci. 48 677 [13] Feng L P, Liu Z T, Liu Q J and Tian H 2010 Comput. Mater. Sci. 50 454 [14] Feng Z B, Hu H Q, Cui S X, Bai C L and Li H S 2009 J. Phys. Chem. Solids 70 412 [15] Du H J, Guo L C, Li D C, Yu D L and He J L 2009 Chin. Phys. Lett. 26 016403 [16] Hu Q K, Wang H Y, Wu Q H, He J L and Zhang G L 2011 Chin. Phys. Lett. 28 126101 [17] Zhang Q L, Zhang P, Song H F and Liu H F 2008 Chin. Phys. B 17 1341 [18] Hao A M, Yang X C, Li J, Xin W, Zhang S H, Zhang X Y and Liu R P 2009 Chin. Phys. Lett. 26 077103 [19] Pulay P 1980 Chem. Phys. Lett. 73 393 [20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [22] Pfrommer B G, C? t é M, Louie S G and Cohen M L 1997 J. Comp. Physiol. 131 233 [23] Kennedy B J, Howard C J and Chakoumakos B C 1999 Phys. Rev. B 60 2972 [24] Born M and Huang K 1982 Dynamical Theory and Experiment I (Berlin: Springer-Verlag) [25] Sin'ko G V and Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989 [26] Voigt W 1928 Lehrbuch der kristallphysik (Teubner Leipzig) [27] Reuss A and Angew Z 1929 J. Appl. Math. Mech. 9 49 [28] Hill R 1952 Proc. Phys. Soc. A 65 349 [29] Hou Z F 2009 Phys. Status Solidi B 246 135 [30] Vali R 2008 Solid State Commun. 148 29 [31] Yu X, Luo X G, Chen G F, Shen J and Li Y X 2007 Acta Phys. Sin. 56 5366 (in Chinese) [32] Wang Y X, Wang C L, Zhong W L, Zhao M L, Li J C and Xue X Y 2004 Acta Phys. Sin. 53 214 (in Chinese) [33] Mulliken R S 1955 J. Chem. Phys. 23 1833 [34] Frantsevich I N, Voronor F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators (Naukova Dumka, Kiev) [35] Shein I R and Ivanovskii A L 2008 J. Phys.: Condens. Matter 20 415218 [36] Pugh S F 1954 Philos. Mag. 45 823 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|