FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Mixed Convection Heat Transfer in Micropolar Nanofluid over a Vertical Slender Cylinder |
Abdul Rehman1,2**, S. Nadeem2 |
1Department of Mathematics, University of Balochistan, Quetta, Pakistan 2Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
|
|
Cite this article: |
Abdul Rehman, S. Nadeem 2012 Chin. Phys. Lett. 29 124701 |
|
|
Abstract Analysis is carried for the problem of boundary layer steady flow and heat transfer of a micropolar fluid containing nanoparticles over a vertical cylinder. The governing partial differential equations of linear momentum, angular momentum, heat transfer and nano concentration are reduced to nonlinear coupled ordinary differential equations by applying the boundary layer approximations and a suitable similarity transformation. These nonlinear coupled ordinary differential equations, subject to the appropriate boundary conditions, are then solved by using the homotopy analysis method. The effects of the physical parameters on the flow, heat transfer and nanoparticle concentration characteristics of the model are presented through graphs and the salient features are discussed.
|
|
Received: 28 June 2012
Published: 04 March 2013
|
|
|
|
|
|
[1] Buongiorno J 2006 ASME J. Heat Transfer 128 240 [2] Kuznetsov A V and Nield D A 2010 Int. J. Theor. Sci. 49 243 [3] Nield D A and Kuznetsov A V 2009 Int. J. Heat Mass Transfer 52 5796 [4] Tzou D Y 2008 ASME J. Heat Transfer 130 72401 [5] Ahmad S and Pop I 2010 Int. Commun. Heat Mass Transfer 37 987 [6] Eastman J A, Choi S U S, Li S, Yu W and Thompson L J 2001 Appl. Phys. Lett. 78 718 [7] Hwang K S, Jang S P and Choi S U S 2009 Int. J. Heat Mass Transfer 52 193 [8] Xuan Y and Li Q 2003 ASME J. Heat Transfer 125 151 [9] Wen D and Ding Y 2004 Int. J. Heat Mass Transfer 47 5181 [10] Masuda H, Ebata A, Teramae K and Hishinuma N 1993 Netsu. Bussei. 7 227 [11] Ishak A, Nazar R and Pop I 2007 Int. J. Heat Mass Transfer 50 4743 [12] Ishak A, Nazar R and Pop I 2009 Commun. Nonlinear Sci. Numer. Simul. 14 109 [13] Nadeem S, Rehman A, Vajravelu K, Lee J and Lee C 2012 Math. Prob. Eng. 2012 378259 [14] Gorla R S R 1988 Int. J. Eng. Sci. 26 385 [15] Heruska M W, Watson L T and Sankara K K 1986 Comput. Fluids 14 117 [16] Nazar R, Amin N, Filip D and Pop I 2004 Int. J. Non-Linear Mech. 39 1227 [17] Ariman T, Turk M A and Sylvester N D 1974 Int. J. Eng. Sci. 12 273 [18] Nadeem S, Hayat T, Abbasbandy S and Ali M 2010 Nonlinear Anal. Real World Appl. 11 856 [19] Nadeem S and Ali M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2073 [20] Turkyilmazoglu M 2010 Appl. Math. Lett. 23 1226 [21] Motsa S S, Sibanda P and Shateyi S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2293 [22] Nadeem S, Rehman A, Lee C and Lee J 2012 Math. Prob. Eng. 2012 640289 [23] Liu C 2011 Commun. Nonlinear. Sci. Numer. Simul. 16 1254 [24] Cheng J, Liao S, Mohapatra R N and Vajravelu K 2008 Math. Anal. Appl. 343 233 [25] Nadeem S, Rehman A and Ali M E 2012 Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems [26] Liao Sj 2003 Beyond Perturbation: Introduction to Homotopy Analysis Method (Boca Raton: Chapman & Hall/CRC Press) [27] Nadeem S and Akbar N S 2011 J. Taiwan Inst. Chem. Eng. 42 58 [28] Liao Sj 2004 Appl. Math. Comput. 147 499 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|