Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 124301    DOI: 10.1088/0256-307X/29/12/124301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analysis of Imperfect Acoustic Cloaking Resonances
KIM Seungil**
Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea
Cite this article:   
KIM Seungil 2012 Chin. Phys. Lett. 29 124301
Download: PDF(1701KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the resonance phenomenon arising from imperfect acoustic cloaking in 2D based on a small perturbation of the transformation acoustics. It is shown that the resonant frequencies of imperfect cloaking appearing in the total scattering cross section converge to Dirichlet eigenvalues of the concealed region as a perturbation parameter approaches zero. This theory enables us to predict the location of the resonant frequencies of imperfect cloaking and to identify the corresponding resonance modes.
Received: 21 August 2012      Published: 04 March 2013
PACS:  43.20.Bi (Mathematical theory of wave propagation)  
  43.20.Fn (Scattering of acoustic waves)  
  43.20.+g (General linear acoustics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/124301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/124301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KIM Seungil
[1] Greenleaf A, Lassas M and Uhlmann G 2003 Commun. Pure Appl. Math. 56 328
[2] Greenleaf A, Lassas M and Uhlmann G 2003 Math. Res. Lett. 10 685
[3] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[4] Chen H and Chan C T 2007 Appl. Phys. Lett. 91 183518
[5] Cummer S A and Schurig D 2007 New J. Phys. 9 45
[6] Greenleaf A, Kurylev Y, Lassas M and Uhlmann G 2007 Commun. Math. Phys. 275 749
[7] Norris A N 2008 Proc. R. Soc. A 464 2411
[8] Torrent D and Sánchez-Dehesa J 2008 New J. Phys. 10 063015
[9] Chen H and Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001
[10] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[11] Greenleaf A, Kurylev Y, Lassas M and Uhlmann G 2008 New J. Phys. 10 115024
[12] Ruan Z, Yan M, Neff C W and Qiu M 2007 Phys. Rev. Lett. 99 113903
[13] Cheng Y and Liu X J 2009 Chin. Phys. Lett. 26 014301
[14] Kundtz N, Gaultney D and Smith D R 2010 New J. Phys. 12 043039
[15] Cheng Y and Liu X J 2008 Appl. Phys. Lett. 93 071903
[16] Cai L W and Sánchez-Dehesa J 2007 New J. Phys. 9 450
[17] Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
[18] Chen H, Liang Z, Yao P, Jiang X, Ma H and Chan C T 2007 Phys. Rev. B 76 241104
[19] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover) chap 9 p 355
Related articles from Frontiers Journals
[1] Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 124301
[2] Fei-Long Zhu, Eric I. Thorsos, Feng-Hua Li. Coupled Perturbed Modes over Sloping Penetrable Bottom[J]. Chin. Phys. Lett., 2017, 34(7): 124301
[3] DING De-Sheng, SHEN Chang-Sheng, LU Hua. A Novel Algorithm for the Sound Field of Rectangular-Shaped Transducers[J]. Chin. Phys. Lett., 2015, 32(12): 124301
[4] GUO Liang, LIU Guang-Fu, YANG Yan-Ju, LIU Guo-Qiang. Vector Based Reconstruction Method in Magneto-Acousto-Electrical Tomography with Magnetic Induction[J]. Chin. Phys. Lett., 2015, 32(09): 124301
[5] ZHANG Ling-Shan, PENG Zhao-Hui. Effect of Source's Height on Air-to-Water Sound Transmission with a Small-Scale Rough Sea Surface[J]. Chin. Phys. Lett., 2014, 31(09): 124301
[6] DING De-Sheng, LÜ Hua, SHEN Chang-Sheng. A Novel Algorithm for the Sound Field of Elliptically Shaped Transducers[J]. Chin. Phys. Lett., 2014, 31(06): 124301
[7] LI Meng-Lei, KIM Seungil. Suppression of the Resonant Scattering in Imperfect Acoustic Cloaking with a Lossy Medium in ?3[J]. Chin. Phys. Lett., 2014, 31(05): 124301
[8] GUO Liang, LIU Guo-Qiang, XIA Hui, CHEN Jing. Forward Procedure of Magneto-Acousto-Electric Signal in Radially Stratified Medium of Conductivity for Logging Models[J]. Chin. Phys. Lett., 2013, 30(12): 124301
[9] HUANG Xian-He, WANG Yan, TANG Xiao-Yu, FU Wei. Energy Trapping in Low Phase Noise Bulk Acoustic Wave Oscillators[J]. Chin. Phys. Lett., 2012, 29(10): 124301
[10] CUI Zhi-Wen, WANG Ke-Xie. A Discussion on the Formula Construction of the BISQ Model[J]. Chin. Phys. Lett., 2012, 29(9): 124301
[11] DAI Yu-Rong, DING De-Sheng. Further Notes on the Gaussian Beam Expansion[J]. Chin. Phys. Lett., 2012, 29(2): 124301
[12] FAN Li**, ZHANG Shu-Yi, ZHANG Hui . Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory[J]. Chin. Phys. Lett., 2011, 28(10): 124301
[13] LIU Wei, YANG Jun. A Simple and Accurate Method for Calculating the Gaussian Beam Expansion Coefficients[J]. Chin. Phys. Lett., 2010, 27(12): 124301
[14] LIANG Bin, ZOU Xin-Ye, CHENG Jian-Chun. Phase Transition in Acoustic Localization in a Soft Medium Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2009, 26(2): 124301
[15] ZHANG Qin-Lei, YANG Guang-Can. Experimental Investigation of Energy Level Dynamics in luminium Blocks with Temperature Distribution[J]. Chin. Phys. Lett., 2008, 25(8): 124301
Viewed
Full text


Abstract