ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Stereodynamics Study of Li+HF/DF/TF→LiF+H/D/T Reactions on X2A' Potential Energy Surface |
TAN Rui-Shan, LIU Xin-Guo**, HU Mei |
College of Physics and Electronics, Shandong Normal University, Jinan 250014 |
|
Cite this article: |
TAN Rui-Shan, LIU Xin-Guo, HU Mei 2012 Chin. Phys. Lett. 29 123101 |
|
|
Abstract The product rotational polarizations of reactions Li+HF/DF/TF at different collision energies are calculated using the quasi-classical trajectory method based on a new potential energy surface constructed by Aguado and Paniagua [J. Chem. Phys. 119 (2003) 10088]. We investigate the P(θr) distributions describing the k–j' correlation, the P(φr) distributions describing the k–k'–j' correlation, and the four polarization-dependent generalized differential cross sections. Furthermore, we compare the influences of mass factor and collision energy in detail and find that the isotope substitution has more impact on the distribution of the product's angular momentum vectors than the collision energy.
|
|
Received: 08 October 2012
Published: 04 March 2013
|
|
PACS: |
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.at
|
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
|
|
34.50.Lf
|
(Chemical reactions)
|
|
|
|
|
[1] Xu W W et al 2009 Chem. Phys. 355 21[2] Kong H et al 2009 Chin. Phys. Lett. 26 053102[3] Zhang W Q et al 2009 J. Phys. Chem. A 113 4192[4] Zhang W Q et al 2010 Chem. Phys. 367 115[5] Duan L H et al 2009 Mol. Phys. 107 2579[6] Zhang C H, Zhang W Q and Chen M D 2009 J. Theor. Comput. Chem. 8 403[7] Hobel O et al 2004 Phys. Chem. Chem. Phys. 6 2198[8] Herschbach D R 1996 Adv. Chem. Phys. 10 319[9] Odiorne T J, Brooks P R and Kasper J V V 1971 J. Chem. Phys. 55 1980[10] Pruett J G and Zare R N 1976 J. Chem. Phys. 64 1774[11] Karny Z, Estler R C and Zare R N 1978 J. Chem. Phys. 69 5199[12] Karny Z and Zare R N 1978 J. Chem. Phys. 68 3360[13] Bartoszek F E et al 1981 J. Chem. Phys. 74 3400[14] Zhang R et al 1988 J. Chem. Phys. 89 6283[15] Hoffmeister M et al 1989 J. Chem. Phys. 90 3528[16] Aguado A and Paniagua M 1992 J. Chem. Phys. 96 1265[17] Suarez C et al 1994 Int. J. Quantum Chem. 52 935[18] Aguado A, Sufirez C and Paniagua M 1995 Chem. Phys. 201 107[19] Aguado A and M Paniagua 1997 J. Chem. Phys. 106 1013[20] Aguado A and Paniagua M 2003 J. Chem. Phys. 119 10088[21] Wecka P F and Balakrishnan N 2005 J. Chem. Phys. 122 234310[22] Yuan M H and Zhao G J 2010 Int. J. Quantum Chem. 110 1842[23] Wang T and Yue X F 2011 Chin. Phys. Lett. 28 023101[24] Li S J et al 2012 Chin. Phys. B 21 013401[25] Brouard M et al 1996 Mol. Phys. 89 403[26] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446[27] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483[28] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463[29] Ma J J et al 2006 Chem. Phys. 327 529[30] Li W L et al 2007 Chem. Phys. 337 93[31] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964[32] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699[33] Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815[34] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201[35] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204[36] Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323[37] Li R J et al 1994 Chem. Phys. Lett. 220 281 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|