Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120702    DOI: 10.1088/0256-307X/29/12/120702
GENERAL |
High Performance Micro CO Sensors Based on ZnO-SnO2 Composite Nanofibers with Anti-Humidity Characteristics
YUE Xue-Jun1,2, HONG Tian-Sheng1, XIANG Wei2**, CAI Kun1, XU Xing1
1Key Laboratory of Key Technology on Agricultural Machine and Equipment (Ministry of Education), Engineering College, South China Agricultural University, Guangzhou 510642
2Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba QLD 4350, Australia
Cite this article:   
YUE Xue-Jun, HONG Tian-Sheng, XIANG Wei et al  2012 Chin. Phys. Lett. 29 120702
Download: PDF(821KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract ZnO-SnO2 composite nanofibers are synthesized via an electrospinning method and characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Micro sensors are fabricated by spinning the nanofibers on Si substrates with Pt signal and heater electrodes. The sensors with small areas (600 μm×200 μm) can detect CO down to 1 ppm at 360°C. The corresponding sensitivity, response time, and recovery time are 3.2, 6 s, and 11 s, respectively. Importantly, the sensors can operate at high humidity conditions. The sensitivity only decreases to 2.3 when the sensors are exposed to 1 ppm CO at 95% relative humidity. These excellent sensing properties are due to combining the benefits of one-dimensional nanomaterials and the ZnO-SnO2 grain boundary in the nanofibers.
Received: 15 March 2012      Published: 04 March 2013
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  82.47.Rs (Electrochemical sensors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120702       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUE Xue-Jun
HONG Tian-Sheng
XIANG Wei
CAI Kun
XU Xing
[1] Nltta T 1981 Ind. Eng. Chem. Prod. Res. Dev. 20 669
[2] Lee S M et al 2003 Microelectron. J. 34 115
[3] Liu Y G et al 2007 Appl. Phys. Lett. 90 042109
[4] Liu L et al 2009 Chin. Phys. Lett. 26 090701
[5] Qiu C J et al 2008 Chin. Phys. Lett. 25 3590
[6] Kolmakov A and Moskovits M 2004 Annu. Rev. Mater. Res. 34 151
[7] Franke M E, Koplin T J and Simon U 2006 Small 2 36
[8] Xu L, Wang R, Xiao Q, Zhang D and Liu Y 2011 Chin. Phys. Lett. 28 070702
[9] Greiner A and Wendorff J H 2007 Angew. Chem. Int. Ed. 46 5670
[10] Qi Q et al 2008 Sens. Actuat. B 133 638
[11] Xu L et al 2011 Chin. Phys. Lett. 28 040701
[12] Li D and Xia Y 2004 Adv. Mater. 16 1151
[13] Qiao J P et al 2012 Chin. Phys. Lett. 29 020701
[14] Narsan N et al 2007 Sens. Actuat. B 121 18
[15] Varghese O K et al 2003 Adv. Mater. 15 624
[16] Ji H Y and Choi G M 1999 Sens. Actuat. B 61 59
[17] Ji H Y and Choi G M 1998 Sens. Actuat. B 52 251
[18] Chakraborty S et al 2006 Sens. Actuat. B 115 610
Related articles from Frontiers Journals
[1] Shaochun Lin, Tian Tian, Peiran Yin, Pu Huang, Liang Zhang, and Jiangfeng Du. Micro-Gas Flow Induced Stochastic Resonance of a Nonlinear Nanomechanical Resonator[J]. Chin. Phys. Lett., 2021, 38(2): 120702
[2] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 120702
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 120702
[4] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 120702
[5] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 120702
[6] Yu-Long Cao, Fei Yang, Dan Xu, Qing Ye, Hai-Wen Cai, Zu-Jie Fang. Phase-Sensitive Optical Time-Domain Reflectometer Based on a 120$^{\circ}$-Phase-Difference Michelson Interferometer[J]. Chin. Phys. Lett., 2016, 33(05): 120702
[7] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 120702
[8] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 120702
[9] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 120702
[10] XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao. A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator[J]. Chin. Phys. Lett., 2015, 32(07): 120702
[11] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 120702
[12] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 120702
[13] FENG Zhao-Bin, LIU Duo. Enhanced Second-Order Resonance Actuation and Frequency Response Modulation of Microcantilever by Dual Coplanar Counter Electrodes[J]. Chin. Phys. Lett., 2013, 30(10): 120702
[14] HUANG Wan-Xia . Fano-Resonance of a Planar Metamaterial[J]. Chin. Phys. Lett., 2013, 30(7): 120702
[15] CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian . Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors[J]. Chin. Phys. Lett., 2013, 30(5): 120702
Viewed
Full text


Abstract