Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120505    DOI: 10.1088/0256-307X/29/12/120505
GENERAL |
Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control
Wafaa Jawaada1, M. S. M. Noorani1, M. Mossa Al-sawalha2
1School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Faculty of Science, Mathematics Department, University of Hail, Kingdom of Saudi Arabia
Cite this article:   
Wafaa Jawaada, M. S. M. Noorani, M. Mossa Al-sawalha 2012 Chin. Phys. Lett. 29 120505
Download: PDF(437KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An anti-synchronization scheme is proposed to achieve the anti-synchronization behavior between chaotic systems with fully unknown parameters. A sliding surface and an adaptive sliding mode controller are designed to gain the anti-synchronization. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally numerical results are presented to justify the theoretical analysis.
Received: 18 April 2012      Published: 04 March 2013
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  47.52.+j (Chaos in fluid dynamics)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120505       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wafaa Jawaada
M. S. M. Noorani
M. Mossa Al-sawalha
[1] Yang T and Chua L Chua 1996 IEEE Trans. Circuits Syst. I 43 817
[2] Liao T L and Tsai S H 2000 Chaos Solitons Fractals 11 1387
[3] Feki M 2003 Chaos Solitons Fractals 18 141
[4] El-Dessoky M 2009 Chaos Solitons Fractals 4 1797
[5] Al-Sawalha M M and Noorani M S M 2008 Chin. Phys. Lett. 25 2743
[6] Al-Sawalha M M and Noorani M S M 2008 Open Syst. Inf. Dyn. 4 371
[7] Al-Sawalha M M and Noorani M S M 2009 Chaos Solitons Fractals 42 179
[8] Al-Sawalha M M and Noorani M S M 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1047
[9] Al-Sawalha M M and Noorani M S M 2009 Phys. Lett. A 32 2857
[10] Al-Sawalha M M and Noorani M S M 2010 Comput. Math. Appl. 10 3234
[11] Zribi M, Smaoui N and Salim H 2009 Chaos Solitons Fractals 5 3197
[12] Zhao Y and Wang W 2009 Chaos Solitons Fractals 41 60
[13] Lorenz E N 1963 J. Atmos. Sci. 2 130
[14] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 7 1465
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 120505
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 120505
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 120505
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 120505
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 120505
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 120505
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 120505
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 120505
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 120505
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 120505
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 120505
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 120505
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 120505
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 120505
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 120505
Viewed
Full text


Abstract