Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120504    DOI: 10.1088/0256-307X/29/12/120504
GENERAL |
Quantum Friction
Roumen Tsekov**
Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria
Cite this article:   
Roumen Tsekov 2012 Chin. Phys. Lett. 29 120504
Download: PDF(409KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Brownian motion of a light quantum particle in a heavy classical gas is theoretically described and a new expression for the friction coefficient is obtained for arbitrary temperature. At zero temperature it equals the de Broglie momentum of the mean free path divided by the mean free path. Alternatively, the corresponding mobility of the quantum particle in the classical gas is equal to the square of the mean free path divided by the Planck constant. The Brownian motion of a quantum particle in a quantum environment is also discussed.
Received: 10 July 2012      Published: 04 March 2013
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120504       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Roumen Tsekov
[1] Scheel S and Buhmann S Y 2009 Phys. Rev. A 80 042902
Scheel S and Buhmann S Y 2008 Acta Phys. Slov. 58 675
[2] Pendry J B 2010 New J. Phys. 12 033028
Pendry J B 1997 J. Phys.: Condens. Matter 9 10301
[3] Despoja V, Echenique P M and ?unji? M 2011 Phys. Rev. B 83 205424
[4] Jaksic V and Pillet C A 1996 Commun. Math. Phys. 176 619 627
[5] Zhu X M and Ao P 1998 J. Low Temp. Phys. 113 1171
[6] Zolfagharkhani G, Gaidarzhy A, Shim S B, Badzey R L and Mohanty P 2005 Phys. Rev. B 72 224101
[7] Volokitin A I and Persson B N J 2011 Phys. Rev. Lett. 106 094502
[8] Zhao R, Manjavacas A, Garcia de Abajo F J and Pendry J B 2012 Phys. Rev. Lett. 109 123604
[9] Grabert H, Schramm P and Ingold G L 1988 Phys. Rep. 168 115
[10] Weiss U 2012 Quantum Dissipative Systems (Singapore: World Scientific)
[11] H?nggi P and Ingold G L 2006 Acta Phys. Pol. B 37 1537
H?nggi P and Ingold G L 2005 Chaos 15 026105
[12] Ingold, G L, Lambrecht A and Reynaud S 2009 Phys. Rev. E 80 041113
[13] Langevin P 1908 Comp. Rend. Acad. Sci. (Paris) 146 530
[14] Robinson F N H 1993 Eur. J. Phys. 14 248
[15] Pitaevskii L P and Lifshitz E M 2002 Physical Kinetics (Oxford: Pergamon)
[16] Vacchini B and Hornberger K 2009 Phys. Rep. 478 71
Vacchini B and Hornberger K 2007 Eur. Phys. J. Spec. Top. 151 59
[17] Tsekov R 2009 Int. J. Theor. Phys. 48 85
[18] Razavy M 2005 Classical and Quantum Dissipative Systems (London: Imperial College Press)
[19] Nelson E 1966 Phys. Rev. 150 1079
[20] Tsekov R 2011 Phys. Scr. 83 035004
[21] Ford G W and O'Connell R F 2006 Phys. Rev. A 73 032103
[22] Tsekov R and Vayssilov G N 2012 Ann. Phys. (Berlin) 524 in press
Related articles from Frontiers Journals
[1] R. Salci, D. A. Acar, O. Oztirpan, M. Ramazanoglu. A New Probe: AFM Measurements for Random Disorder Systems[J]. Chin. Phys. Lett., 2019, 36(1): 120504
[2] Xiang Zhang, Yu-Dong Li, Lin Wen, Dong Zhou, Jie Feng, Lin-Dong Ma, Tian-Hui Wang, Yu-Long Cai, Zhi-Ming Wang, Qi Guo. Radiation Effects Due to 3MeV Proton Irradiations on Back-Side Illuminated CMOS Image Sensors[J]. Chin. Phys. Lett., 2018, 35(7): 120504
[3] Yan-Ling Feng, Jian-Min Dong, Xu-Lei Tang. Non-Markovian Effect on Gene Transcriptional Systems[J]. Chin. Phys. Lett., 2016, 33(10): 120504
[4] Ling-Wei Kong, Rong-Zheng Wan, Hai-Ping Fang. Transportation of Two Coupled Particles in an Asymmetric Saw-Tooth Potential[J]. Chin. Phys. Lett., 2016, 33(02): 120504
[5] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 120504
[6] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 120504
[7] SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang, LIANG Wen-Ye, ZHANG Chun-Mei, HAN Yun-Guang, CHEN Wei, HAN Zheng-Fu. Phase-Coding Self-Testing Quantum Random Number Generator[J]. Chin. Phys. Lett., 2015, 32(08): 120504
[8] LI Jing-Hui. Dilemma Produced by Infinity of a Random Walk[J]. Chin. Phys. Lett., 2015, 32(5): 120504
[9] LAI Chu-Yu, CHEN Ju-Hua, WANG Yong-Jiu. The Motion of Spinning Particles in the Spacetime of a Black Hole with a Cosmic String Topological Defect[J]. Chin. Phys. Lett., 2014, 31(09): 120504
[10] WANG Can-Jun, YANG Ke-Li, QU Shi-Xian. Time-Delay Enhanced Coherence Resonance in a Discrete Neuron with Noises[J]. Chin. Phys. Lett., 2014, 31(08): 120504
[11] LI Jing-Hui. Average Mean Escape Time for an Overdamped Spatially-Periodic System and Application to Josephson Junction[J]. Chin. Phys. Lett., 2014, 31(06): 120504
[12] LI Jing-Hui. Response of a Superconducting Quantum Interference Device to Alternating Magnetic Field[J]. Chin. Phys. Lett., 2014, 31(06): 120504
[13] LI Jing-Hui. Stochastic Resonance for a SQUID with Dichotomous Resistance[J]. Chin. Phys. Lett., 2014, 31(03): 120504
[14] ZENG Ling-Zao, LIU Bing-Yang, XU Yi-Da, LI Jian-Long. Effect of Time Delay on Binary Signal Detection via a Bistable System[J]. Chin. Phys. Lett., 2014, 31(2): 120504
[15] SUN Xiao-Juan, LU Qi-Shao. Non-Gaussian Colored Noise Optimized Spatial Coherence of a Hodgkin–Huxley Neuronal Network[J]. Chin. Phys. Lett., 2014, 31(2): 120504
Viewed
Full text


Abstract