Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120502    DOI: 10.1088/0256-307X/29/12/120502
GENERAL |
Generalized Zero-Temperature Glauber Dynamics in a Two-Dimensional Square Lattice
MENG Qing-Kuan**, FENG Dong-Tai, GAO Xu-Tuan, MEI Yu-Xue
School of Science, Shandong University of Technology, Zibo 255049
Cite this article:   
MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan et al  2012 Chin. Phys. Lett. 29 120502
Download: PDF(541KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new spin flipping mechanism at zero-temperature is proposed based on a node model. In a two-dimensional square lattice, at the zero-temperature, the spin flipping depends on both itself and the surroundings, while the influence from the surroundings is embodied by an adjustable parameter. With the parameter adjusting, a first order phase transition is observed.
Received: 14 August 2012      Published: 04 March 2013
PACS:  05.50.+q (Lattice theory and statistics)  
  05.70.Fh (Phase transitions: general studies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120502       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MENG Qing-Kuan
FENG Dong-Tai
GAO Xu-Tuan
MEI Yu-Xue
[1] Glauber R J 1963 J. Math. Phys. 4 294
[2] Liggett T M 1985 Interacting Particle Systems (New York: Springer-Verlag)
[3] Spirin V, Krapivsky P L and Redner S 2001 Phys. Rev. E 65 016119
[4] Barros K, Krapivsky P L and Redner S 2009 Phys. Rev. E 80 040101(R)
[5] Olejarz J, Krapivsky P L and Redner S 2011 Phys. Rev. E 83 051104
[6] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[7] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[8] Herrero C P 2009 J. Phys. A: Math. Theor. 42 415102
[9] Castellano C and Loreto V 2005 Phys. Rev. E 71 066107
[10] Weerasinghe G L, Needs R J and Pickard C J 2011 Phys. Rev. B 84 174110
[11] Casadei M, Ren X, Rinke P, Rubio A and Scheffler M 2012 Phys. Rev. Lett. 109 146402
[12] Fratini E and Pieri P 2012 Phys. Rev. A 85 063618
[13] Osychenko O N, Astrakharchik G E, Mazzanti F and Boronat J 2012 Phys. Rev. A 85 063604
[14] Kalis H, Klagges D, Orús R and Schmidt K P 2012 Phys. Rev. A 86 022317
[15] Shopova D V and Uzunov D I 2003 Phys. Rep. 379 1
[16] Meng Q K 2011 Chin. Phys. Lett. 28 118901
[17] Zhu J Y and Yang Z R 1999 Phys. Rev. E 59 1551
Related articles from Frontiers Journals
[1] Shaolong Zeng, Sue Ping Szeto, and Fan Zhong. Theory of Critical Phenomena with Memory[J]. Chin. Phys. Lett., 2022, 39(12): 120502
[2] Sheng Fang, Zongzheng Zhou, and Youjin Deng. Geometric Upper Critical Dimensions of the Ising Model[J]. Chin. Phys. Lett., 2022, 39(8): 120502
[3] Ze-Wang Zhang, Shuo Yang, Yi-Hang Wu, Chen-Xi Liu, Yi-Min Han, Ching-Hua Lee, Zheng Sun, Guang-Jie Li, Xiao Zhang. Predicting Quantum Many-Body Dynamics with Transferable Neural Networks[J]. Chin. Phys. Lett., 2020, 37(1): 120502
[4] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 120502
[5] M. Q. Owaidat, A. A. Al-Badawi, J. H. Asad, Mohammed Al-Twiessi. Two-Point Resistance on the Centered-Triangular Lattice[J]. Chin. Phys. Lett., 2018, 35(2): 120502
[6] JIA Li-Ping, Jasmina Tekić, DUAN Wen-Shan. Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice[J]. Chin. Phys. Lett., 2015, 32(4): 120502
[7] CHEN Yan, ZHANG Ke-Zhi, WANG Xiao-Liang, CHEN Yong. Ground-State Properties of Superfluid Fermi Gas in Fourier-Synthesized Optical Lattices[J]. Chin. Phys. Lett., 2014, 31(03): 120502
[8] B. G. Divyamani, Sudha. Thermal Entanglement in a Two-Qubit Ising Chain Subjected to Dzyaloshinsky–Moriya Interaction[J]. Chin. Phys. Lett., 2013, 30(12): 120502
[9] QIN Ming-Pu, CHEN Jing, CHEN Qiao-Ni, XIE Zhi-Yuan, KONG Xin, ZHAO Hui-Hai, Bruce Normand, XIANG Tao . Partial Order in Potts Models on the Generalized Decorated Square Lattice[J]. Chin. Phys. Lett., 2013, 30(7): 120502
[10] WANG Bo, HUANG Hai-Lin, SUN Zhao-Yu, KOU Su-Peng. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System[J]. Chin. Phys. Lett., 2012, 29(12): 120502
[11] LI Xiang, DONG Li-Yun. Modeling and Simulation of Pedestrian Counter Flow on a Crosswalk[J]. Chin. Phys. Lett., 2012, 29(9): 120502
[12] XU Yan, HUANG Hai-Jun, and YONG Gui. Modified Static Floor Field and Exit Choice for Pedestrian Evacuation[J]. Chin. Phys. Lett., 2012, 29(8): 120502
[13] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 120502
[14] LIU Ping, LOU Sen-Yue,. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System[J]. Chin. Phys. Lett., 2010, 27(2): 120502
[15] SUN Rong-Sheng, HUA Da-Yin. Synchronization of Local Oscillations in a Spatial Rock-Scissors-Paper Game Model[J]. Chin. Phys. Lett., 2009, 26(8): 120502
Viewed
Full text


Abstract